381 lines
14 KiB
Python
381 lines
14 KiB
Python
|
# Authors: David Goodger, Ueli Schlaepfer
|
||
|
# Contact: goodger@users.sourceforge.net
|
||
|
# Revision: $Revision$
|
||
|
# Date: $Date$
|
||
|
# Copyright: This module has been placed in the public domain.
|
||
|
|
||
|
"""
|
||
|
Transforms related to the front matter of a document (information
|
||
|
found before the main text):
|
||
|
|
||
|
- `DocTitle`: Used to transform a lone top level section's title to
|
||
|
the document title, and promote a remaining lone top-level section's
|
||
|
title to the document subtitle.
|
||
|
|
||
|
- `DocInfo`: Used to transform a bibliographic field list into docinfo
|
||
|
elements.
|
||
|
"""
|
||
|
|
||
|
__docformat__ = 'reStructuredText'
|
||
|
|
||
|
import re
|
||
|
from docutils import nodes, utils
|
||
|
from docutils.transforms import TransformError, Transform
|
||
|
|
||
|
|
||
|
class DocTitle(Transform):
|
||
|
|
||
|
"""
|
||
|
In reStructuredText_, there is no way to specify a document title
|
||
|
and subtitle explicitly. Instead, we can supply the document title
|
||
|
(and possibly the subtitle as well) implicitly, and use this
|
||
|
two-step transform to "raise" or "promote" the title(s) (and their
|
||
|
corresponding section contents) to the document level.
|
||
|
|
||
|
1. If the document contains a single top-level section as its
|
||
|
first non-comment element, the top-level section's title
|
||
|
becomes the document's title, and the top-level section's
|
||
|
contents become the document's immediate contents. The lone
|
||
|
top-level section header must be the first non-comment element
|
||
|
in the document.
|
||
|
|
||
|
For example, take this input text::
|
||
|
|
||
|
=================
|
||
|
Top-Level Title
|
||
|
=================
|
||
|
|
||
|
A paragraph.
|
||
|
|
||
|
Once parsed, it looks like this::
|
||
|
|
||
|
<document>
|
||
|
<section name="top-level title">
|
||
|
<title>
|
||
|
Top-Level Title
|
||
|
<paragraph>
|
||
|
A paragraph.
|
||
|
|
||
|
After running the DocTitle transform, we have::
|
||
|
|
||
|
<document name="top-level title">
|
||
|
<title>
|
||
|
Top-Level Title
|
||
|
<paragraph>
|
||
|
A paragraph.
|
||
|
|
||
|
2. If step 1 successfully determines the document title, we
|
||
|
continue by checking for a subtitle.
|
||
|
|
||
|
If the lone top-level section itself contains a single
|
||
|
second-level section as its first non-comment element, that
|
||
|
section's title is promoted to the document's subtitle, and
|
||
|
that section's contents become the document's immediate
|
||
|
contents. Given this input text::
|
||
|
|
||
|
=================
|
||
|
Top-Level Title
|
||
|
=================
|
||
|
|
||
|
Second-Level Title
|
||
|
~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
A paragraph.
|
||
|
|
||
|
After parsing and running the Section Promotion transform, the
|
||
|
result is::
|
||
|
|
||
|
<document name="top-level title">
|
||
|
<title>
|
||
|
Top-Level Title
|
||
|
<subtitle name="second-level title">
|
||
|
Second-Level Title
|
||
|
<paragraph>
|
||
|
A paragraph.
|
||
|
|
||
|
(Note that the implicit hyperlink target generated by the
|
||
|
"Second-Level Title" is preserved on the "subtitle" element
|
||
|
itself.)
|
||
|
|
||
|
Any comment elements occurring before the document title or
|
||
|
subtitle are accumulated and inserted as the first body elements
|
||
|
after the title(s).
|
||
|
"""
|
||
|
|
||
|
default_priority = 320
|
||
|
|
||
|
def apply(self):
|
||
|
if self.promote_document_title():
|
||
|
self.promote_document_subtitle()
|
||
|
|
||
|
def promote_document_title(self):
|
||
|
section, index = self.candidate_index()
|
||
|
if index is None:
|
||
|
return None
|
||
|
document = self.document
|
||
|
# Transfer the section's attributes to the document element (at root):
|
||
|
document.attributes.update(section.attributes)
|
||
|
document[:] = (section[:1] # section title
|
||
|
+ document[:index] # everything that was in the
|
||
|
# document before the section
|
||
|
+ section[1:]) # everything that was in the section
|
||
|
return 1
|
||
|
|
||
|
def promote_document_subtitle(self):
|
||
|
subsection, index = self.candidate_index()
|
||
|
if index is None:
|
||
|
return None
|
||
|
subtitle = nodes.subtitle()
|
||
|
# Transfer the subsection's attributes to the new subtitle:
|
||
|
subtitle.attributes.update(subsection.attributes)
|
||
|
# Transfer the contents of the subsection's title to the subtitle:
|
||
|
subtitle[:] = subsection[0][:]
|
||
|
document = self.document
|
||
|
document[:] = (document[:1] # document title
|
||
|
+ [subtitle]
|
||
|
# everything that was before the section:
|
||
|
+ document[1:index]
|
||
|
# everything that was in the subsection:
|
||
|
+ subsection[1:])
|
||
|
return 1
|
||
|
|
||
|
def candidate_index(self):
|
||
|
"""
|
||
|
Find and return the promotion candidate and its index.
|
||
|
|
||
|
Return (None, None) if no valid candidate was found.
|
||
|
"""
|
||
|
document = self.document
|
||
|
index = document.first_child_not_matching_class(
|
||
|
nodes.PreBibliographic)
|
||
|
if index is None or len(document) > (index + 1) or \
|
||
|
not isinstance(document[index], nodes.section):
|
||
|
return None, None
|
||
|
else:
|
||
|
return document[index], index
|
||
|
|
||
|
|
||
|
class DocInfo(Transform):
|
||
|
|
||
|
"""
|
||
|
This transform is specific to the reStructuredText_ markup syntax;
|
||
|
see "Bibliographic Fields" in the `reStructuredText Markup
|
||
|
Specification`_ for a high-level description. This transform
|
||
|
should be run *after* the `DocTitle` transform.
|
||
|
|
||
|
Given a field list as the first non-comment element after the
|
||
|
document title and subtitle (if present), registered bibliographic
|
||
|
field names are transformed to the corresponding DTD elements,
|
||
|
becoming child elements of the "docinfo" element (except for a
|
||
|
dedication and/or an abstract, which become "topic" elements after
|
||
|
"docinfo").
|
||
|
|
||
|
For example, given this document fragment after parsing::
|
||
|
|
||
|
<document>
|
||
|
<title>
|
||
|
Document Title
|
||
|
<field_list>
|
||
|
<field>
|
||
|
<field_name>
|
||
|
Author
|
||
|
<field_body>
|
||
|
<paragraph>
|
||
|
A. Name
|
||
|
<field>
|
||
|
<field_name>
|
||
|
Status
|
||
|
<field_body>
|
||
|
<paragraph>
|
||
|
$RCSfile$
|
||
|
...
|
||
|
|
||
|
After running the bibliographic field list transform, the
|
||
|
resulting document tree would look like this::
|
||
|
|
||
|
<document>
|
||
|
<title>
|
||
|
Document Title
|
||
|
<docinfo>
|
||
|
<author>
|
||
|
A. Name
|
||
|
<status>
|
||
|
frontmatter.py
|
||
|
...
|
||
|
|
||
|
The "Status" field contained an expanded RCS keyword, which is
|
||
|
normally (but optionally) cleaned up by the transform. The sole
|
||
|
contents of the field body must be a paragraph containing an
|
||
|
expanded RCS keyword of the form "$keyword: expansion text $". Any
|
||
|
RCS keyword can be processed in any bibliographic field. The
|
||
|
dollar signs and leading RCS keyword name are removed. Extra
|
||
|
processing is done for the following RCS keywords:
|
||
|
|
||
|
- "RCSfile" expands to the name of the file in the RCS or CVS
|
||
|
repository, which is the name of the source file with a ",v"
|
||
|
suffix appended. The transform will remove the ",v" suffix.
|
||
|
|
||
|
- "Date" expands to the format "YYYY/MM/DD hh:mm:ss" (in the UTC
|
||
|
time zone). The RCS Keywords transform will extract just the
|
||
|
date itself and transform it to an ISO 8601 format date, as in
|
||
|
"2000-12-31".
|
||
|
|
||
|
(Since the source file for this text is itself stored under CVS,
|
||
|
we can't show an example of the "Date" RCS keyword because we
|
||
|
can't prevent any RCS keywords used in this explanation from
|
||
|
being expanded. Only the "RCSfile" keyword is stable; its
|
||
|
expansion text changes only if the file name changes.)
|
||
|
"""
|
||
|
|
||
|
default_priority = 340
|
||
|
|
||
|
def apply(self):
|
||
|
document = self.document
|
||
|
index = document.first_child_not_matching_class(
|
||
|
nodes.PreBibliographic)
|
||
|
if index is None:
|
||
|
return
|
||
|
candidate = document[index]
|
||
|
if isinstance(candidate, nodes.field_list):
|
||
|
biblioindex = document.first_child_not_matching_class(
|
||
|
nodes.Titular)
|
||
|
nodelist = self.extract_bibliographic(candidate)
|
||
|
del document[index] # untransformed field list (candidate)
|
||
|
document[biblioindex:biblioindex] = nodelist
|
||
|
return
|
||
|
|
||
|
def extract_bibliographic(self, field_list):
|
||
|
docinfo = nodes.docinfo()
|
||
|
bibliofields = self.language.bibliographic_fields
|
||
|
labels = self.language.labels
|
||
|
topics = {'dedication': None, 'abstract': None}
|
||
|
for field in field_list:
|
||
|
try:
|
||
|
name = field[0][0].astext()
|
||
|
normedname = utils.normalize_name(name)
|
||
|
if not (len(field) == 2 and bibliofields.has_key(normedname)
|
||
|
and self.check_empty_biblio_field(field, name)):
|
||
|
raise TransformError
|
||
|
biblioclass = bibliofields[normedname]
|
||
|
if issubclass(biblioclass, nodes.TextElement):
|
||
|
if not self.check_compound_biblio_field(field, name):
|
||
|
raise TransformError
|
||
|
utils.clean_rcs_keywords(
|
||
|
field[1][0], self.rcs_keyword_substitutions)
|
||
|
docinfo.append(biblioclass('', '', *field[1][0]))
|
||
|
else: # multiple body elements possible
|
||
|
if issubclass(biblioclass, nodes.authors):
|
||
|
self.extract_authors(field, name, docinfo)
|
||
|
elif issubclass(biblioclass, nodes.topic):
|
||
|
if topics[normedname]:
|
||
|
field[-1] += self.document.reporter.warning(
|
||
|
'There can only be one "%s" field.' % name,
|
||
|
base_node=field)
|
||
|
raise TransformError
|
||
|
title = nodes.title(name, labels[normedname])
|
||
|
topics[normedname] = biblioclass(
|
||
|
'', title, CLASS=normedname, *field[1].children)
|
||
|
else:
|
||
|
docinfo.append(biblioclass('', *field[1].children))
|
||
|
except TransformError:
|
||
|
if len(field[-1]) == 1 \
|
||
|
and isinstance(field[-1][0], nodes.paragraph):
|
||
|
utils.clean_rcs_keywords(
|
||
|
field[-1][0], self.rcs_keyword_substitutions)
|
||
|
docinfo.append(field)
|
||
|
continue
|
||
|
nodelist = []
|
||
|
if len(docinfo) != 0:
|
||
|
nodelist.append(docinfo)
|
||
|
for name in ('dedication', 'abstract'):
|
||
|
if topics[name]:
|
||
|
nodelist.append(topics[name])
|
||
|
return nodelist
|
||
|
|
||
|
def check_empty_biblio_field(self, field, name):
|
||
|
if len(field[-1]) < 1:
|
||
|
field[-1] += self.document.reporter.warning(
|
||
|
'Cannot extract empty bibliographic field "%s".' % name,
|
||
|
base_node=field)
|
||
|
return None
|
||
|
return 1
|
||
|
|
||
|
def check_compound_biblio_field(self, field, name):
|
||
|
if len(field[-1]) > 1:
|
||
|
field[-1] += self.document.reporter.warning(
|
||
|
'Cannot extract compound bibliographic field "%s".' % name,
|
||
|
base_node=field)
|
||
|
return None
|
||
|
if not isinstance(field[-1][0], nodes.paragraph):
|
||
|
field[-1] += self.document.reporter.warning(
|
||
|
'Cannot extract bibliographic field "%s" containing '
|
||
|
'anything other than a single paragraph.' % name,
|
||
|
base_node=field)
|
||
|
return None
|
||
|
return 1
|
||
|
|
||
|
rcs_keyword_substitutions = [
|
||
|
(re.compile(r'\$' r'Date: (\d\d\d\d)/(\d\d)/(\d\d) [\d:]+ \$$',
|
||
|
re.IGNORECASE), r'\1-\2-\3'),
|
||
|
(re.compile(r'\$' r'RCSfile: (.+),v \$$', re.IGNORECASE), r'\1'),
|
||
|
(re.compile(r'\$[a-zA-Z]+: (.+) \$$'), r'\1'),]
|
||
|
|
||
|
def extract_authors(self, field, name, docinfo):
|
||
|
try:
|
||
|
if len(field[1]) == 1:
|
||
|
if isinstance(field[1][0], nodes.paragraph):
|
||
|
authors = self.authors_from_one_paragraph(field)
|
||
|
elif isinstance(field[1][0], nodes.bullet_list):
|
||
|
authors = self.authors_from_bullet_list(field)
|
||
|
else:
|
||
|
raise TransformError
|
||
|
else:
|
||
|
authors = self.authors_from_paragraphs(field)
|
||
|
authornodes = [nodes.author('', '', *author)
|
||
|
for author in authors if author]
|
||
|
if len(authornodes) > 1:
|
||
|
docinfo.append(nodes.authors('', *authornodes))
|
||
|
elif len(authornodes) == 1:
|
||
|
docinfo.append(authornodes[0])
|
||
|
else:
|
||
|
raise TransformError
|
||
|
except TransformError:
|
||
|
field[-1] += self.document.reporter.warning(
|
||
|
'Bibliographic field "%s" incompatible with extraction: '
|
||
|
'it must contain either a single paragraph (with authors '
|
||
|
'separated by one of "%s"), multiple paragraphs (one per '
|
||
|
'author), or a bullet list with one paragraph (one author) '
|
||
|
'per item.'
|
||
|
% (name, ''.join(self.language.author_separators)),
|
||
|
base_node=field)
|
||
|
raise
|
||
|
|
||
|
def authors_from_one_paragraph(self, field):
|
||
|
text = field[1][0].astext().strip()
|
||
|
if not text:
|
||
|
raise TransformError
|
||
|
for authorsep in self.language.author_separators:
|
||
|
authornames = text.split(authorsep)
|
||
|
if len(authornames) > 1:
|
||
|
break
|
||
|
authornames = [author.strip() for author in authornames]
|
||
|
authors = [[nodes.Text(author)] for author in authornames if author]
|
||
|
return authors
|
||
|
|
||
|
def authors_from_bullet_list(self, field):
|
||
|
authors = []
|
||
|
for item in field[1][0]:
|
||
|
if len(item) != 1 or not isinstance(item[0], nodes.paragraph):
|
||
|
raise TransformError
|
||
|
authors.append(item[0].children)
|
||
|
if not authors:
|
||
|
raise TransformError
|
||
|
return authors
|
||
|
|
||
|
def authors_from_paragraphs(self, field):
|
||
|
for item in field[1]:
|
||
|
if not isinstance(item, nodes.paragraph):
|
||
|
raise TransformError
|
||
|
authors = [item.children for item in field[1]]
|
||
|
return authors
|