PEP 630: Isolating Extension Modules (GH-1574)
This commit is contained in:
parent
9bcc557e4a
commit
1861b0bb1a
|
@ -0,0 +1,487 @@
|
||||||
|
PEP: 630
|
||||||
|
Title: Isolating Extension Modules
|
||||||
|
Author: Petr Viktorin <encukou@gmail.com>
|
||||||
|
Discussions-To: capi-sig@python.org
|
||||||
|
Status: Draft
|
||||||
|
Type: Informational
|
||||||
|
Content-Type: text/x-rst
|
||||||
|
Created: 25-Aug-2020
|
||||||
|
Post-History: 16-Jul-2020
|
||||||
|
|
||||||
|
|
||||||
|
Isolating Extension Modules
|
||||||
|
===========================
|
||||||
|
|
||||||
|
Abstract
|
||||||
|
--------
|
||||||
|
|
||||||
|
Traditionally, state of Python extension modules was kept in C
|
||||||
|
``static`` variables, which have process-wide scope. This document
|
||||||
|
describes problems of such per-process state and efforts to make
|
||||||
|
per-module state, a better default, possible and easy to use.
|
||||||
|
|
||||||
|
The document also describes how to switch to per-module state where
|
||||||
|
possible. The switch involves allocating space for that state, switching
|
||||||
|
from static types to heap types, and—perhaps most importantly—accessing
|
||||||
|
per-module state from code.
|
||||||
|
|
||||||
|
About this document
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
As an `informational PEP <https://www.python.org/dev/peps/pep-0001/#pep-types>`__,
|
||||||
|
this document does not introduce any changes: those should be done in
|
||||||
|
their own PEPs (or issues, if small enough). Rather, it covers the
|
||||||
|
motivation behind an effort that spans multiple releases, and instructs
|
||||||
|
early adopters on how to use the finished features.
|
||||||
|
|
||||||
|
Once support is reasonably complete, the text can be moved to Python's
|
||||||
|
documentation as a HOWTO. Meanwhile, in the spirit of documentation-driven
|
||||||
|
development, gaps identified in this text can show where to focus
|
||||||
|
the effort, and the text can be updated as new features are implemented
|
||||||
|
|
||||||
|
Whenever this PEP mentions *extension modules*, the advice also
|
||||||
|
applies to *built-in* modules, such as the C parts of the standard
|
||||||
|
library. The standard library is expected to switch to per-module state
|
||||||
|
early.
|
||||||
|
|
||||||
|
PEPs related to this effort are:
|
||||||
|
|
||||||
|
- PEP 384 -- *Defining a Stable ABI*, which added C API for creating
|
||||||
|
heap types
|
||||||
|
- PEP 489 -- *Multi-phase extension module initialization*
|
||||||
|
- PEP 573 -- *Module State Access from C Extension Methods*
|
||||||
|
|
||||||
|
This document is concerned with Python's public C API, which is not
|
||||||
|
offered by all implementations of Python. However, nothing in this PEP is
|
||||||
|
specific to CPython.
|
||||||
|
|
||||||
|
As with any Informational PEP, this text does not necessarily represent
|
||||||
|
a Python community consensus or recommendation.
|
||||||
|
|
||||||
|
Motivation
|
||||||
|
----------
|
||||||
|
|
||||||
|
An *interpreter* is the context in which Python code runs. It contains
|
||||||
|
configuration (e.g. the import path) and runtime state (e.g. the set of
|
||||||
|
imported modules).
|
||||||
|
|
||||||
|
Python supports running multiple interpreters in one process. There are
|
||||||
|
two cases to think about—users may run interpreters:
|
||||||
|
|
||||||
|
- in sequence, with several ``Py_InitializeEx``/``Py_FinalizeEx``
|
||||||
|
cycles, and
|
||||||
|
- in parallel, managing “sub-interpreters” using
|
||||||
|
``Py_NewInterpreter``/``Py_EndInterpreter``.
|
||||||
|
|
||||||
|
Both cases (and combinations of them) would be most useful when
|
||||||
|
embedding Python within a library. Libraries generally shouldn't make
|
||||||
|
assumptions about the application that uses them, which includes
|
||||||
|
assumptions about a process-wide “main Python interpreter”.
|
||||||
|
|
||||||
|
Currently, CPython doesn't handle this use case well. Many extension
|
||||||
|
modules (and even some stdlib modules) use *per-process* global state,
|
||||||
|
because C ``static`` variables are extremely easy to use. Thus, data
|
||||||
|
that should be specific to an interpreter ends up being shared between
|
||||||
|
interpreters. Unless the extension developer is careful, it is very easy
|
||||||
|
to introduce edge cases that lead to crashes when a module is loaded in
|
||||||
|
more than one interpreter.
|
||||||
|
|
||||||
|
Unfortunately, *per-interpreter* state is not easy to achieve: extension
|
||||||
|
authors tend to not keep multiple interpreters in mind when developing,
|
||||||
|
and it is currently cumbersome to test the behavior.
|
||||||
|
|
||||||
|
Rationale for Per-module State
|
||||||
|
------------------------------
|
||||||
|
|
||||||
|
Instead of focusing on per-interpreter state, Python's C API is evolving
|
||||||
|
to better support the more granular *per-module* state. By default,
|
||||||
|
C-level data will be attached to a *module object*. Each interpreter
|
||||||
|
will then create its own module object, keeping data separate. For
|
||||||
|
testing the isolation, multiple module objects corresponding to a single
|
||||||
|
extension can even be loaded in a single interpreter.
|
||||||
|
|
||||||
|
Per-module state provides an easy way to think about lifetime and
|
||||||
|
resource ownership: the extension module author will set up when a
|
||||||
|
module object is created, and clean up when it's freed. In this regard,
|
||||||
|
a module is just like any other ``PyObject *``; there are no “on
|
||||||
|
interpreter shutdown” hooks to think about—or forget about.
|
||||||
|
|
||||||
|
Goal: Easy-to-use Module State
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
It is currently cumbersome or impossible to do everything the C API
|
||||||
|
offers while keeping modules isolated. Enabled by PEP 384, changes in
|
||||||
|
PEPs 489 and 573 (and future planned ones) aim to first make it
|
||||||
|
*possible* to build modules this way, and then to make it *easy* to
|
||||||
|
write new modules this way and to convert old ones, so that it can
|
||||||
|
become a natural default.
|
||||||
|
|
||||||
|
Even if per-module state becomes the default, there will be use cases
|
||||||
|
for different levels of encapsulation: per-process, per-interpreter,
|
||||||
|
per-thread or per-task state. The goal is to treat these as exceptional
|
||||||
|
cases: they should be possible, but extension authors will need to
|
||||||
|
think more carefully about them.
|
||||||
|
|
||||||
|
Non-goals: Speedups and the GIL
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There is some effort to speed up CPython on multi-core CPUs by making the GIL
|
||||||
|
per-interpreter. While isolating interpreters helps that effort,
|
||||||
|
defaulting to per-module state will be beneficial even if no speedup is
|
||||||
|
achieved, as it makes supporting multiple interpreters safer by default.
|
||||||
|
|
||||||
|
How to make modules safe with multiple interpreters
|
||||||
|
---------------------------------------------------
|
||||||
|
|
||||||
|
There are many ways to correctly support multiple interpreters in
|
||||||
|
extension modules. The rest of this text describes the preferred way to
|
||||||
|
write such a module, or to convert an existing module.
|
||||||
|
|
||||||
|
Note that support is a work in progress; the API for some features your
|
||||||
|
module needs might not yet be ready.
|
||||||
|
|
||||||
|
A full example module is currently available in `a fork on
|
||||||
|
GitHub <https://github.com/encukou/cpython/blob/xxlimited-facelift/Modules/xxlimited.c>`__.
|
||||||
|
|
||||||
|
.. XXX: Later, it should be in the CPython source tree.
|
||||||
|
|
||||||
|
This section assumes that “*you*” are an extension module author.
|
||||||
|
|
||||||
|
|
||||||
|
Isolated Module Objects
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
The key point to keep in mind when developing an extension module is
|
||||||
|
that several module objects can be created from a single shared library.
|
||||||
|
For example::
|
||||||
|
|
||||||
|
>>> import sys
|
||||||
|
>>> import binascii
|
||||||
|
>>> old_binascii = binascii
|
||||||
|
>>> del sys.modules['binascii']
|
||||||
|
>>> import binascii # create a new module object
|
||||||
|
>>> old_binascii == binascii
|
||||||
|
False
|
||||||
|
|
||||||
|
As a rule of thumb, the two modules should be completely independent.
|
||||||
|
All objects and state specific to the module should be encapsulated
|
||||||
|
within the module object, not shared with other module objects, and
|
||||||
|
cleaned up when the module object is deallocated. Exceptions are
|
||||||
|
possible (see “Managing global state” below), but they will need more
|
||||||
|
thought and attention to edge cases than code that follows this rule of
|
||||||
|
thumb.
|
||||||
|
|
||||||
|
While some modules could do with less stringent restrictions, isolated
|
||||||
|
modules make it easier to set clear expectations (and guidelines) that
|
||||||
|
work across a variety of use cases.
|
||||||
|
|
||||||
|
Surprising Edge Cases
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Note that isolated modules do create some surprising edge cases. Most
|
||||||
|
notably, each module object will typically not share its classes and
|
||||||
|
exceptions with other similar modules. Continuing from the example
|
||||||
|
above, note that ``old_binascii.Error`` and ``binascii.Error`` are
|
||||||
|
separate objects. In the following code, the exception is *not* caught::
|
||||||
|
|
||||||
|
>>> old_binascii.Error == binascii.Error
|
||||||
|
False
|
||||||
|
>>> try:
|
||||||
|
... old_binascii.unhexlify(b'qwertyuiop')
|
||||||
|
... except binascii.Error:
|
||||||
|
... print('boo')
|
||||||
|
...
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "<stdin>", line 2, in <module>
|
||||||
|
binascii.Error: Non-hexadecimal digit found
|
||||||
|
|
||||||
|
This is expected. Notice that pure-Python modules behave the same way:
|
||||||
|
it is a part of how Python works.
|
||||||
|
|
||||||
|
The goal is to make extension modules safe at the C level, not to make
|
||||||
|
hacks behave intuitively. Mutating ``sys.modules`` “manually” counts
|
||||||
|
as a hack.
|
||||||
|
|
||||||
|
Managing Global State
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Sometimes, state of a Python module is not specific to that module, but
|
||||||
|
to the entire process (or something else “more global” than a module).
|
||||||
|
For example:
|
||||||
|
|
||||||
|
- The ``readline`` module manages *the* terminal.
|
||||||
|
- A module running on a circuit board wants to control *the* on-board
|
||||||
|
LED.
|
||||||
|
|
||||||
|
In these cases, the Python module should provide *access* to the global
|
||||||
|
state, rather than *own* it. If possible, write the module so that
|
||||||
|
multiple copies of it can access the state independently (along with
|
||||||
|
other libraries, whether for Python or other languages).
|
||||||
|
|
||||||
|
If that is not possible, consider explicit locking.
|
||||||
|
|
||||||
|
If it is necessary to use process-global state, the simplest way to
|
||||||
|
avoid issues with multiple interpreters is to explicitly prevent a
|
||||||
|
module from being loaded more than once per process—see “Opt-Out:
|
||||||
|
Limiting to One Module Object per Process” below.
|
||||||
|
|
||||||
|
Managing Per-Module State
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
To use per-module state, use `multi-phase extension module
|
||||||
|
initialization <https://docs.python.org/3/c-api/module.html#multi-phase-initialization>`__
|
||||||
|
introduced in PEP 489. This signals that your module supports multiple
|
||||||
|
interpreters correctly.
|
||||||
|
|
||||||
|
Set ``PyModuleDef.m_size`` to a positive number to request that many
|
||||||
|
bytes of storage local to the module. Usually, this will be set to the
|
||||||
|
size of some module-specific ``struct``, which can store all of the
|
||||||
|
module's C-level state. In particular, it is where you should put
|
||||||
|
pointers to classes (including exceptions) and settings (e.g. ``csv``'s
|
||||||
|
`field_size_limit <https://docs.python.org/3.8/library/csv.html#csv.field_size_limit>`__)
|
||||||
|
which the C code needs to function.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Another option is to store state in the module's ``__dict__``,
|
||||||
|
but you must avoid crashing when users modify ``__dict__`` from
|
||||||
|
Python code. This means error- and type-checking at the C level,
|
||||||
|
which is easy to get wrong and hard to test sufficiently.
|
||||||
|
|
||||||
|
If the module state includes ``PyObject`` pointers, the module object
|
||||||
|
must hold references to those objects and implement module-level hooks
|
||||||
|
``m_traverse``, ``m_clear``, ``m_free``. These work like
|
||||||
|
``tp_traverse``, ``tp_clear``, ``tp_free`` of a class. Adding them will
|
||||||
|
require some work and make the code longer; this is the price for
|
||||||
|
modules which can be unloaded cleanly.
|
||||||
|
|
||||||
|
An example of a module with per-module state is currently available in
|
||||||
|
`a fork on GitHub <https://github.com/encukou/cpython/blob/xxlimited-facelift/Modules/xxlimited.c>`__;
|
||||||
|
later it should be in the CPython source tree, with module
|
||||||
|
initialization is at the bottom of the file.
|
||||||
|
|
||||||
|
.. XXX: Later, it should be in the CPython source tree.
|
||||||
|
|
||||||
|
|
||||||
|
Opt-Out: Limiting to One Module Object per Process
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
A non-negative ``PyModuleDef.m_size`` signals that a module supports
|
||||||
|
multiple interpreters correctly. If this is not yet the case for your
|
||||||
|
module, you can explicitly make your module loadable only once per
|
||||||
|
process. For example::
|
||||||
|
|
||||||
|
static int loaded = 0;
|
||||||
|
|
||||||
|
static int
|
||||||
|
exec_module(PyObject* module)
|
||||||
|
{
|
||||||
|
if (loaded) {
|
||||||
|
PyErr_SetString(PyExc_ImportError,
|
||||||
|
"cannot load module more than once per process");
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
loaded = 1;
|
||||||
|
// ... rest of initialization
|
||||||
|
}
|
||||||
|
|
||||||
|
Module State Access from Functions
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Accessing the state from module-level functions is straightforward.
|
||||||
|
Functions get the module object as their first argument; for extracting
|
||||||
|
the state there is ``PyModule_GetState``::
|
||||||
|
|
||||||
|
static PyObject *
|
||||||
|
func(PyObject *module, PyObject *args)
|
||||||
|
{
|
||||||
|
my_struct *state = (my_struct*)PyModule_GetState(module);
|
||||||
|
if (state == NULL) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
// ... rest of logic
|
||||||
|
}
|
||||||
|
|
||||||
|
(Note that ``PyModule_GetState`` may return NULL without seting an
|
||||||
|
exception if there is no module state, i.e. ``PyModuleDef.m_size`` was
|
||||||
|
zero. In your own module, you're in control of ``m_size``, so this is
|
||||||
|
easy to prevent.)
|
||||||
|
|
||||||
|
Heap types
|
||||||
|
~~~~~~~~~~
|
||||||
|
|
||||||
|
Traditionally, types defined in C code were *static*, that is,
|
||||||
|
``static PyTypeObject`` structures defined directly in code and
|
||||||
|
initialized using ``PyType_Ready()``.
|
||||||
|
|
||||||
|
Such types are necessarily shared across the process. Sharing them
|
||||||
|
between module objects requires paying attention to any state they own
|
||||||
|
or access. To limit the possible issues, static types are immutable at
|
||||||
|
the Python level: for example, you can't set ``str.myattribute = 123``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Sharing truly immutable objects between interpreters is fine,
|
||||||
|
as long as they don't provide access to mutable objects. But, every
|
||||||
|
Python object has a mutable implementation detail: the reference
|
||||||
|
count. Changes to the refcount are guarded by the GIL. Thus, code
|
||||||
|
that shares any Python objects across interpreters implicitly depends
|
||||||
|
on CPython's current, process-wide GIL.
|
||||||
|
|
||||||
|
An alternative to static types is *heap-allocated types*, or heap types
|
||||||
|
for short. These correspond more closely to classes created by Python’s
|
||||||
|
``class`` statement.
|
||||||
|
|
||||||
|
Heap types can be created by filling a ``PyType_Spec`` structure, a
|
||||||
|
description or “blueprint” of a class, and calling
|
||||||
|
``PyType_FromModuleAndSpec()`` to construct a new class object.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Other functions, like ``PyType_FromSpec()``, can also create
|
||||||
|
heap types, but ``PyType_FromModuleAndSpec()`` associates the module
|
||||||
|
with the class, allowing access to the module state from methods.
|
||||||
|
|
||||||
|
The class should generally be stored in *both* the module state (for
|
||||||
|
safe access from C) and the module's ``__dict__`` (for access from
|
||||||
|
Python code).
|
||||||
|
|
||||||
|
Module State Access from Classes
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
If you have a type object defined with ``PyType_FromModuleAndSpec()``,
|
||||||
|
you can call ``PyType_GetModule`` to get the associated module, then
|
||||||
|
``PyModule_GetState`` to get the module's state.
|
||||||
|
|
||||||
|
To save a some tedious error-handling boilerplate code, you can combine
|
||||||
|
these two steps with ``PyType_GetModuleState``, resulting in::
|
||||||
|
|
||||||
|
my_struct *state = (my_struct*)PyType_GetModuleState(type);
|
||||||
|
if (state === NULL) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
Module State Access from Regular Methods
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Accessing the module-level state from methods of a class is somewhat
|
||||||
|
more complicated, but possible thanks to changes introduced in PEP 573.
|
||||||
|
To get the state, you need to first get the *defining class*, and then
|
||||||
|
get the module state from it.
|
||||||
|
|
||||||
|
The largest roadblock is getting *the class a method was defined in*, or
|
||||||
|
that method's “defining class” for short. The defining class can have a
|
||||||
|
reference to the module it is part of.
|
||||||
|
|
||||||
|
Do not confuse the defining class with ``Py_TYPE(self)``. If the method
|
||||||
|
is called on a *subclass* of your type, ``Py_TYPE(self)`` will refer to
|
||||||
|
that subclass, which may be defined in different module than yours.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
The following Python code. can illustrate the concept.
|
||||||
|
``Base.get_defining_class`` returns ``Base`` even
|
||||||
|
if ``type(self) == Sub``::
|
||||||
|
|
||||||
|
class Base:
|
||||||
|
def get_defining_class(self):
|
||||||
|
return __class__
|
||||||
|
|
||||||
|
class Sub(Base):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
For a method to get its “defining class”, it must use the
|
||||||
|
``METH_METHOD | METH_FASTCALL | METH_KEYWORDS`` `calling
|
||||||
|
convention <https://docs.python.org/3.9/c-api/structures.html?highlight=meth_o#c.PyMethodDef>`__
|
||||||
|
and the corresponding `PyCMethod
|
||||||
|
signature <https://docs.python.org/3.9/c-api/structures.html#c.PyCMethod>`__::
|
||||||
|
|
||||||
|
PyObject *PyCMethod(
|
||||||
|
PyObject *self, // object the method was called on
|
||||||
|
PyTypeObject *defining_class, // defining class
|
||||||
|
PyObject *const *args, // C array of arguments
|
||||||
|
Py_ssize_t nargs, // length of "args"
|
||||||
|
PyObject *kwnames) // NULL, or dict of keyword arguments
|
||||||
|
|
||||||
|
Once you have the defining class, call ``PyType_GetModuleState`` to get
|
||||||
|
the state of its associated module.
|
||||||
|
|
||||||
|
For example::
|
||||||
|
|
||||||
|
static PyObject *
|
||||||
|
example_method(PyObject *self,
|
||||||
|
PyTypeObject *defining_class,
|
||||||
|
PyObject *const *args,
|
||||||
|
Py_ssize_t nargs,
|
||||||
|
PyObject *kwnames)
|
||||||
|
{
|
||||||
|
my_struct *state = (my_struct*)PyType_GetModuleState(defining_class);
|
||||||
|
if (state === NULL) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
... // rest of logic
|
||||||
|
}
|
||||||
|
|
||||||
|
PyDoc_STRVAR(example_method_doc, "...");
|
||||||
|
|
||||||
|
static PyMethodDef my_methods[] = {
|
||||||
|
{"example_method",
|
||||||
|
(PyCFunction)(void(*)(void))example_method,
|
||||||
|
METH_METHOD|METH_FASTCALL|METH_KEYWORDS,
|
||||||
|
example_method_doc}
|
||||||
|
{NULL},
|
||||||
|
}
|
||||||
|
|
||||||
|
Open Issues
|
||||||
|
-----------
|
||||||
|
|
||||||
|
Several issues around per-module state and heap types are still open.
|
||||||
|
|
||||||
|
Discussions about improving the situation are best held on the `capi-sig
|
||||||
|
mailing list <https://mail.python.org/mailman3/lists/capi-sig.python.org/>`__.
|
||||||
|
|
||||||
|
Module State Access from Slot Methods, Getters and Setters
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Currently (as of Python 3.9), there is no API to access the module state
|
||||||
|
from:
|
||||||
|
|
||||||
|
- slot methods (meaning type slots, such as ``tp_new``, ``nb_add`` or
|
||||||
|
``tp_iternext``)
|
||||||
|
- getters and setters defined with ``tp_getset``
|
||||||
|
|
||||||
|
Type Checking
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Currently (as of Python 3.9), heap types have no good API to write
|
||||||
|
``Py*_Check`` functions (like ``PyUnicode_Check`` exists for ``str``, a
|
||||||
|
static type), and so it is not easy to ensure whether instances have a
|
||||||
|
particular C layout.
|
||||||
|
|
||||||
|
Metaclasses
|
||||||
|
~~~~~~~~~~~
|
||||||
|
|
||||||
|
Currently (as of Python 3.9), there is no good API to specify the
|
||||||
|
*metaclass* of a heap type, that is, the ``ob_type`` field of the type
|
||||||
|
object.
|
||||||
|
|
||||||
|
Per-Class scope
|
||||||
|
~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
It is also not possible to attach state to *types*. While
|
||||||
|
``PyHeapTypeObject`` is a variable-size object (``PyVarObject``),
|
||||||
|
its variable-size storage is currently consumed by slots. Fixing this
|
||||||
|
is complicated by the fact that several classes in an inheritance
|
||||||
|
hierarchy may need to reserve some state.
|
||||||
|
|
||||||
|
Copyright
|
||||||
|
---------
|
||||||
|
|
||||||
|
This document is placed in the public domain or under the
|
||||||
|
CC0-1.0-Universal license, whichever is more permissive.
|
||||||
|
|
||||||
|
..
|
||||||
|
Local Variables:
|
||||||
|
mode: indented-text
|
||||||
|
indent-tabs-mode: nil
|
||||||
|
sentence-end-double-space: t
|
||||||
|
fill-column: 70
|
||||||
|
coding: utf-8
|
||||||
|
End:
|
Loading…
Reference in New Issue