PEP 612: Updates from typing-sig discussions (#1424)
This commit is contained in:
parent
b617b14c01
commit
d32dc02bde
706
pep-0612.rst
706
pep-0612.rst
|
@ -17,13 +17,13 @@ Abstract
|
|||
--------
|
||||
|
||||
There currently are two ways to specify the type of a callable, the
|
||||
``Callable[[T1, T2], TReturn]`` syntax defined in `PEP 484
|
||||
``Callable[[int, str], bool]`` syntax defined in `PEP 484
|
||||
<https://www.python.org/dev/peps/pep-0484>`_\ , and callback protocols from `PEP
|
||||
544 <https://www.python.org/dev/peps/pep-0544/#callback-protocols>`_. Neither of
|
||||
these support forwarding the parameter types of one callable over to another
|
||||
callable, making it difficult to annotate function decorators. This PEP proposes
|
||||
``typing.ParameterSpecification``\ , a new kind of type variable, to support
|
||||
expressing these kinds of relationships.
|
||||
``typing.ParamSpec`` and ``typing.type_variable_operators.Concatenate`` to
|
||||
support expressing these kinds of relationships.
|
||||
|
||||
Motivation
|
||||
----------
|
||||
|
@ -35,91 +35,130 @@ tools to annotate the following common decorator pattern satisfactorily:
|
|||
|
||||
from typing import Awaitable, Callable, TypeVar
|
||||
|
||||
TReturn = TypeVar("TReturn")
|
||||
R = TypeVar("R")
|
||||
|
||||
def add_logging(
|
||||
f: Callable[..., TReturn]
|
||||
) -> Callable[..., Awaitable[TReturn]]:
|
||||
async def inner(*args: object, **kwargs: object) -> TReturn:
|
||||
def add_logging(f: Callable[..., R]) -> Callable[..., Awaitable[R]]:
|
||||
async def inner(*args: object, **kwargs: object) -> R:
|
||||
await log_to_database()
|
||||
return f(*args, **kwargs)
|
||||
return inner
|
||||
|
||||
@add_logging
|
||||
def foo(x: int, y: str) -> int:
|
||||
def takes_int_str(x: int, y: str) -> int:
|
||||
return x + 7
|
||||
|
||||
await foo(1, "A")
|
||||
await foo("B", 2) # fails at runtime
|
||||
await takes_int_str(1, "A")
|
||||
await takes_int_str("B", 2) # fails at runtime
|
||||
|
||||
``add_logging``\ , a decorator which logs before each entry into the decorated
|
||||
function, is an instance of the Python idiom of one function passing all
|
||||
arguments given to it over to another function through the combination of the
|
||||
``*args`` and ``**kwargs`` features in both parameters and in arguments. When
|
||||
one defines a function (like ``inner``\ ) that takes ``(*args, **kwargs)`` and
|
||||
goes on to call another function with ``(*args, **kwargs)``\ , the wrapping
|
||||
function can only be safely called in all of the ways that the wrapped function
|
||||
could be safely called. To type this decorator, we’d like to be able to place
|
||||
a dependency between the parameters of the callable ``f`` and the parameters of
|
||||
the returned function. `PEP 484 <https://www.python.org/dev/peps/pep-0484>`_
|
||||
supports dependencies between single types, as in ``def append(l:
|
||||
typing.List[T], e: T) -> typing.List[T]: ...``\ , but there is no existing way
|
||||
to do so with a complicated entity like the parameters one could pass to
|
||||
a function.
|
||||
arguments given to it over to another function. This is done through the
|
||||
combination of the ``*args`` and ``**kwargs`` features in both parameters and in
|
||||
arguments. When one defines a function (like ``inner``\ ) that takes ``(*args,
|
||||
**kwargs)`` and goes on to call another function with ``(*args, **kwargs)``\
|
||||
, the wrapping function can only be safely called in all of the ways that the
|
||||
wrapped function could be safely called. To type this decorator, we’d like to be
|
||||
able to place a dependency between the parameters of the callable ``f`` and the
|
||||
parameters of the returned function. `PEP 484
|
||||
<https://www.python.org/dev/peps/pep-0484>`_ supports dependencies between
|
||||
single types, as in ``def append(l: typing.List[T], e: T) -> typing.List[T]:
|
||||
...``\ , but there is no existing way to do so with a complicated entity like
|
||||
the parameters of a function.
|
||||
|
||||
Due to the limitations of the status quo, the ``add_logging`` example will type
|
||||
check but will fail at runtime. ``inner`` will pass the string “B” into ``foo``\
|
||||
, which will try to add 7 to it, triggering a type error. This was not caught
|
||||
by the type checker because the decorated ``foo`` was given the type
|
||||
``Callable[..., Awaitable[int]]`` which is specified to do no validation on its
|
||||
arguments.
|
||||
check but will fail at runtime. ``inner`` will pass the string “B” into
|
||||
``takes_int_str``\, which will try to add 7 to it, triggering a type error.
|
||||
This was not caught by the type checker because the decorated ``takes_int_str``
|
||||
was given the type ``Callable[..., Awaitable[int]]`` (an ellipsis in place of
|
||||
parameter types is specified to mean that we do no validation on arguments).
|
||||
|
||||
Without the ability to define dependencies between the parameters of different
|
||||
callable types, there is no way, at present, to make ``add_logging`` compatible
|
||||
with all functions, while still preserving the enforcement of the parameters of
|
||||
the decorated function.
|
||||
|
||||
With the addition of the ``ParameterSpecification`` variables proposed by this
|
||||
With the addition of the ``ParamSpec`` variables proposed by this
|
||||
PEP, we can rewrite the previous example in a way that keeps the flexibility of
|
||||
the decorator and the parameter enforcement of the decorated function.
|
||||
|
||||
.. code-block::
|
||||
|
||||
from typing import Awaitable, Callable, ParameterSpecification, TypeVar
|
||||
from typing import Awaitable, Callable, ParamSpec, TypeVar
|
||||
|
||||
Ps = ParameterSpecification("Ps")
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
def add_logging(f: Callable[Ps, R]) -> Callable[Ps, Awaitable[R]]:
|
||||
async def inner(*args: Ps.args, **kwargs: Ps.kwargs) -> R:
|
||||
def add_logging(f: Callable[P, R]) -> Callable[P, Awaitable[R]]:
|
||||
async def inner(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
await log_to_database()
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return inner
|
||||
|
||||
@add_logging
|
||||
def foo(x: int, y: str) -> int:
|
||||
def takes_int_str(x: int, y: str) -> int:
|
||||
return x + 7
|
||||
|
||||
await foo(1, "A")
|
||||
await foo("B", 2) # Incompatible parameter type:
|
||||
# Expected `int` for 1st anonymous parameter to call `foo`
|
||||
# but got `str`
|
||||
await takes_int_str(1, "A") # Accepted
|
||||
await takes_int_str("B", 2) # Correctly rejected by the type checker
|
||||
|
||||
Another common decorator pattern that has previously been impossible to type is
|
||||
the practice of adding or removing arguments from the decorated function. For
|
||||
example:
|
||||
|
||||
.. code-block::
|
||||
|
||||
class Request:
|
||||
...
|
||||
|
||||
def with_request(f: Callable[..., R]) -> Callable[..., R]:
|
||||
def inner(*args: object, **kwargs: object) -> R:
|
||||
return f(Request(), *args, **kwargs)
|
||||
return inner
|
||||
|
||||
@with_request
|
||||
def takes_int_str(request: Request, x: int, y: str) -> int:
|
||||
# use request
|
||||
return x + 7
|
||||
|
||||
takes_int_str(1, "A")
|
||||
takes_int_str("B", 2) # fails at runtime
|
||||
|
||||
|
||||
With the addition of the ``Concatenate`` operator from this PEP, we can even
|
||||
type this more complex decorator.
|
||||
|
||||
.. code-block::
|
||||
|
||||
from typing.type_variable_operators import Concatenate
|
||||
|
||||
def with_request(f: Callable[Concatenate[Request, P], R]) -> Callable[P, R]:
|
||||
def inner(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
return f(Request(), *args, **kwargs)
|
||||
return inner
|
||||
|
||||
@with_request
|
||||
def takes_int_str(request: Request, x: int, y: str) -> int:
|
||||
# use request
|
||||
return x + 7
|
||||
|
||||
takes_int_str(1, "A") # Accepted
|
||||
takes_int_str("B", 2) # Correctly rejected by the type checker
|
||||
|
||||
|
||||
Specification
|
||||
-------------
|
||||
|
||||
Declarations
|
||||
^^^^^^^^^^^^
|
||||
ParamSpec Declarations
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
A parameter specification variable is defined in a similar manner to a normal
|
||||
``typing.TypeVar``.
|
||||
A parameter specification variable is defined in a similar manner to how a
|
||||
normal type variable is defined with ``typing.TypeVar``.
|
||||
|
||||
.. code-block::
|
||||
|
||||
from typing import ParameterSpecification
|
||||
TParams = ParameterSpecification("TParams") # Accepted
|
||||
TParams = ParameterSpecification("WrongName") # Rejected
|
||||
from typing import ParamSpec
|
||||
P = ParamSpec("P") # Accepted
|
||||
P = ParamSpec("WrongName") # Rejected because P =/= WrongName
|
||||
|
||||
The runtime should accept ``bound``\ s and ``covariant`` and ``contravariant``
|
||||
arguments in the declaration just as ``typing.TypeVar`` does, but for now we
|
||||
|
@ -128,46 +167,100 @@ will defer the standardization of the semantics of those options to a later PEP.
|
|||
Valid use locations
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
A declared ``ParameterSpecification`` can only be used in the place of the list
|
||||
of types in the declaration of a ``Callable`` type, or a user defined class
|
||||
which is generic in a ``ParameterSpecification`` variable (i.e., ``MyClass`` in
|
||||
the following example).
|
||||
Previously only a list of parameter arguments (``[A, B, C]``) or an ellipsis
|
||||
(signifying "undefined parameters") were acceptable as the first "argument" to
|
||||
``typing.Callable`` . We now augment that with two new options: a parameter
|
||||
specification variable (``Callable[P, int]``\ ) or a concatenation on a
|
||||
parameter specification variable (``Callable[Concatenate[int, P], int]``\ ).
|
||||
|
||||
.. code-block::
|
||||
|
||||
def foo(
|
||||
x: typing.Callable[TParams, int]
|
||||
) -> typing.Callable[TParams, str]: # Accepted
|
||||
callable ::= Callable "[" parameters_expression, type_expression "]"
|
||||
|
||||
parameters_expression ::=
|
||||
| "..."
|
||||
| "[" [ type_expression ("," type_expression)\* ] "]"
|
||||
| parameter_specification_variable
|
||||
| concatenate "["
|
||||
type_expression ("," type_expression)\* ","
|
||||
parameter_specification_variable
|
||||
"]"
|
||||
|
||||
where ``parameter_specification_variable`` is a ``typing.ParamSpec`` variable,
|
||||
declared in the manner as defined above, and ``concatenate`` is
|
||||
``typing.type_variable_operators.Concatenate``.
|
||||
|
||||
As before, ``parameters_expression``\ s by themselves are not acceptable in
|
||||
places where a type is expected
|
||||
|
||||
.. code-block::
|
||||
|
||||
def foo(x: P) -> P: ... # Rejected
|
||||
def foo(x: Concatenate[int, P]) -> int: ... # Rejected
|
||||
def foo(x: typing.List[P]) -> None: ... # Rejected
|
||||
def foo(x: Callable[[int, str], P]) -> None: ... # Rejected
|
||||
|
||||
|
||||
User-Defined Generic Classes
|
||||
````````````````````````````
|
||||
|
||||
Just as defining a class as inheriting from ``Generic[T]`` makes a class generic
|
||||
for a single parameter (when ``T`` is a ``TypeVar``\ ), defining a class as
|
||||
inheriting from ``Generic[P]`` makes a class generic on
|
||||
``parameters_expression``\ s (when ``P`` is a ``ParamSpec``).
|
||||
|
||||
.. code-block::
|
||||
|
||||
T = TypeVar("T")
|
||||
S = TypeVar("S")
|
||||
P_2 = ParamSpec("P_2")
|
||||
|
||||
class X(Generic[T, P]):
|
||||
...
|
||||
def foo(
|
||||
x: MyClass[TParams, int]
|
||||
) -> typing.Callable[TParams, str]: # Accepted
|
||||
|
||||
def f(x: X[int, P_2]) -> str: ... # Accepted
|
||||
def f(x: X[int, Concatenate[int, P_2]]) -> str: ... # Accepted
|
||||
def f(x: X[int, [int, bool]]) -> str: ... # Accepted
|
||||
def f(x: X[int, ...]) -> str: ... # Accepted
|
||||
def f(x: X[int, int]) -> str: ... # Rejected
|
||||
|
||||
By the rules defined above, spelling an concrete instance of a class generic
|
||||
with respect to only a single ``ParamSpec`` would require unsightly double
|
||||
brackets. For aesthetic purposes we allow these to be omitted.
|
||||
|
||||
.. code-block::
|
||||
|
||||
class Z(Generic[P]):
|
||||
...
|
||||
def foo(x: TParams) -> TParams: ... # Rejected
|
||||
def foo(x: typing.List[TParams]) -> None: ... # Rejected
|
||||
def foo(x: typing.Callable[[int, str], TParams]) -> None: ... # Rejected
|
||||
|
||||
def f(x: Z[[int, str, bool]]) -> str: ... # Accepted
|
||||
def f(x: Z[int, str, bool]) -> str: ... # Equivalent
|
||||
|
||||
Semantics
|
||||
^^^^^^^^^
|
||||
|
||||
The inference rules for the return type of a function invocation whose signature
|
||||
contains a ``ParameterSpecification`` variable are analogous to those around
|
||||
contains a ``ParamSpec`` variable are analogous to those around
|
||||
evaluating ones with ``TypeVar``\ s.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def foo(
|
||||
x: typing.Callable[TParams, int]
|
||||
) -> typing.Callable[TParams, str]: ...
|
||||
def bar(a: str, b: bool) -> int: ...
|
||||
f = foo(bar) # f should be inferred to have the same signature as bar,
|
||||
# but returning str
|
||||
def changes_return_type_to_str(x: Callable[P, int]) -> Callable[P, str]: ...
|
||||
|
||||
def returns_int(a: str, b: bool) -> int: ...
|
||||
|
||||
f = changes_return_type_to_str(returns_int) # f should have the type:
|
||||
# (a: str, b: bool) -> str
|
||||
|
||||
f("A", True) # Accepted
|
||||
f(a="A", b=True) # Accepted
|
||||
f("A", "A") # Rejected
|
||||
|
||||
expects_str(f("A", True)) # Accepted
|
||||
expects_int(f("A", True)) # Rejected
|
||||
|
||||
Just as with traditional ``TypeVars``\ , a user may include the same
|
||||
``ParameterSpecification`` multiple times in the arguments of the same function,
|
||||
``ParamSpec`` multiple times in the arguments of the same function,
|
||||
to indicate a dependency between multiple arguments. In these cases a type
|
||||
checker may choose to solve to a common behavioral supertype (i.e. a set of
|
||||
parameters for which all of the valid calls are valid in both of the subtypes),
|
||||
|
@ -175,122 +268,282 @@ but is not obligated to do so.
|
|||
|
||||
.. code-block::
|
||||
|
||||
def foo(
|
||||
x: typing.Callable[TParams, int], y: typing.Callable[TParams, int]
|
||||
) -> typing.Callable[TParams, bool]: ...
|
||||
P = ParamSpec("P")
|
||||
|
||||
def foo(x: Callable[P, int], y: Callable[P, int]) -> Callable[P, bool]: ...
|
||||
|
||||
def x_int_y_str(x: int, y: str) -> int: ...
|
||||
def y_int_x_str(y: int, x: str) -> int: ...
|
||||
foo(x_int_y_str, x_int_y_str) # Must return (x: int, y: str) -> int
|
||||
foo(x_int_y_str, y_int_x_str) # Could return (__a: int, __b: str) -> int
|
||||
|
||||
foo(x_int_y_str, x_int_y_str) # Should return (x: int, y: str) -> bool
|
||||
|
||||
foo(x_int_y_str, y_int_x_str) # Could return (__a: int, __b: str) -> bool
|
||||
# This works because both callables have types
|
||||
# that are behavioral subtypes of
|
||||
# Callable[[int, str], int]
|
||||
# Callable[[int, str], object]
|
||||
|
||||
def keyword_only_x(*, x: int) -> int: ...
|
||||
def keyword_only_y(*, y: int) -> int: ...
|
||||
foo(keyword_only_x, keyword_only_y) # Must be rejected
|
||||
foo(keyword_only_x, keyword_only_y) # Rejected
|
||||
|
||||
Use in ``Generic`` Classes
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Just as with normal ``TypeVar``\ s, ``ParameterSpecification``\ s can be used to
|
||||
make generic classes as well as generic functions. These are able to be
|
||||
mixed with normal ``TypeVar``\ s. This also work with
|
||||
protocols in the same manner.
|
||||
|
||||
The components of a ``ParameterSpecification``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
A ``ParameterSpecification`` captures both positional and keyword accessible
|
||||
parameters, but there unfortunately is no object in the runtime that captures
|
||||
both of these together. Instead, we are forced to separate them into ``*args``
|
||||
and ``**kwargs``\ , respectively. This means we need to be able to split apart
|
||||
a single ``ParameterSpecification`` into these two components, and then bring
|
||||
them back together into a call. To do this, we introduce ``TParams.args`` to
|
||||
represent the tuple of positional arguments in a given call and
|
||||
``TParams.kwargs`` to represent the corresponding ``Mapping`` of keywords to
|
||||
values. These operators can only be used together, as the annotated types for
|
||||
``*args`` and ``**kwargs`` .
|
||||
The semantics of ``Concatenate[X, Y, P]`` are that it represents the parameters
|
||||
represented by ``P`` with two positional-only parameters prepended. This means
|
||||
that we can use it to represent higher order functions that add, remove or
|
||||
transform a finite number of parameters of a callable.
|
||||
|
||||
.. code-block::
|
||||
|
||||
class G(Generic[TParams]):
|
||||
def foo(
|
||||
*args: TParams.args, **kwargs: TParams.kwargs
|
||||
) -> int: # Accepted
|
||||
...
|
||||
def bar(
|
||||
*args: TParams.kwargs, **kwargs: TParams.args
|
||||
) -> int: # Rejected
|
||||
...
|
||||
def baz(*args: TParams.args) -> int: ... # Rejected
|
||||
stored_arguments: TParams.args # Rejected
|
||||
def bap(x: TParams.args) -> int: ... # Rejected
|
||||
def bop(
|
||||
*args: List[TParams.args], **kwargs: TParams.kwargs
|
||||
) -> int: # Rejected
|
||||
...
|
||||
def bar(x: int, *args: bool) -> int: ...
|
||||
|
||||
Because the default kind of parameter in Python (\ ``(x: int)``\ ) may be
|
||||
addressed both positionally and through its name, two valid invocations of
|
||||
a ``(*args: TParams.args, **kwargs: TParams.kwargs)`` function may give
|
||||
different partitions of the same set of parameters. Therefore we need to make
|
||||
sure that these special types are only brought into the world together, and are
|
||||
used together, so that our usage is valid for all possible partitions.
|
||||
def add(x: Callable[P, int]) -> Callable[Concatenate[str, P], bool]: ...
|
||||
|
||||
add(bar) # Should return (__a: str, x: int, *args: bool) -> bool
|
||||
|
||||
def remove(x: Callable[Concatenate[int, P], int]) -> Callable[P, bool]: ...
|
||||
|
||||
remove(bar) # Should return (*args: bool) -> bool
|
||||
|
||||
def transform(
|
||||
x: Callable[Concatenate[int, P], int]
|
||||
) -> Callable[Concatenate[str, P], bool]: ...
|
||||
|
||||
transform(bar) # Should return (__a: str, *args: bool) -> bool
|
||||
|
||||
This also means that while any function that returns an ``R`` can satisfy
|
||||
``typing.Callable[P, R]``, only functions that can be called positionally in
|
||||
their first position with a ``X`` can satisfy
|
||||
``typing.Callable[Concatenate[X, P], R]``.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def expects_int_first(x: Callable[Concatenate[int, P], int]) -> None: ...
|
||||
|
||||
@expects_int_first # Rejected
|
||||
def one(x: str) -> int: ...
|
||||
|
||||
@expects_int_first # Rejected
|
||||
def two(*, x: int) -> int: ...
|
||||
|
||||
@expects_int_first # Rejected
|
||||
def three(**kwargs: int) -> int: ...
|
||||
|
||||
@expects_int_first # Accepted
|
||||
def four(*args: int) -> int: ...
|
||||
|
||||
There are still some classes of decorators still not supported with these
|
||||
features:
|
||||
|
||||
* those that add/remove/change a **variable** number of parameters (for
|
||||
example, ``functools.partial`` will remain untypable even after this PEP)
|
||||
* those that add/remove/change keyword-only parameters (See
|
||||
`Concatenating Keyword Parameters`_ for more details).
|
||||
|
||||
The components of a ``ParamSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
A ``ParamSpec`` captures both positional and keyword accessible
|
||||
parameters, but there unfortunately is no object in the runtime that captures
|
||||
both of these together. Instead, we are forced to separate them into ``*args``
|
||||
and ``**kwargs``\ , respectively. This means we need to be able to split apart
|
||||
a single ``ParamSpec`` into these two components, and then bring
|
||||
them back together into a call. To do this, we introduce ``P.args`` to
|
||||
represent the tuple of positional arguments in a given call and
|
||||
``P.kwargs`` to represent the corresponding ``Mapping`` of keywords to
|
||||
values.
|
||||
|
||||
Valid use locations
|
||||
```````````````````
|
||||
|
||||
These "properties" can only be used as the annotated types for
|
||||
``*args`` and ``**kwargs``\ , accessed from a ParamSpec already in scope.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def puts_p_into_scope(f: Callable[P, int]) -> None:
|
||||
|
||||
def inner(*args: P.args, **kwargs: P.kwargs) -> None: # Accepted
|
||||
pass
|
||||
|
||||
def mixed_up(*args: P.kwargs, **kwargs: P.args) -> None: # Rejected
|
||||
pass
|
||||
|
||||
def misplaced(x: P.args) -> None: # Rejected
|
||||
pass
|
||||
|
||||
def out_of_scope(*args: P.args, **kwargs: P.kwargs) -> None: # Rejected
|
||||
pass
|
||||
|
||||
|
||||
Furthermore, because the default kind of parameter in Python (\ ``(x: int)``\ )
|
||||
may be addressed both positionally and through its name, two valid invocations
|
||||
of a ``(*args: P.args, **kwargs: P.kwargs)`` function may give different
|
||||
partitions of the same set of parameters. Therefore we need to make sure that
|
||||
these special types are only brought into the world together, and are used
|
||||
together, so that our usage is valid for all possible partitions.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def puts_p_into_scope(f: Callable[P, int]) -> None:
|
||||
|
||||
stored_args: P.args # Rejected
|
||||
|
||||
stored_kwargs: P.args # Rejected
|
||||
|
||||
def just_args(*args: P.args) -> None: # Rejected
|
||||
pass
|
||||
|
||||
def just_kwargs(*args: P.args) -> None: # Rejected
|
||||
pass
|
||||
|
||||
|
||||
Semantics
|
||||
`````````
|
||||
|
||||
With those requirements met, we can now take advantage of the unique properties
|
||||
afforded to us by this set up:
|
||||
|
||||
|
||||
* Inside the function, ``args`` has the type ``TParams.args``\ , not
|
||||
``Tuple[TParams.args, ...]`` as would be with a normal annotation
|
||||
* Inside the function, ``args`` has the type ``P.args``\ , not
|
||||
``Tuple[P.args, ...]`` as would be with a normal annotation
|
||||
(and likewise with the ``**kwargs``\ )
|
||||
* A function of type ``Callable[TParams, TReturn]`` can be called with
|
||||
``(*args, **kwargs)`` if and only if ``args`` has the type ``TParams.args``
|
||||
and ``kwargs`` has the type ``TParams.kwargs``\ , and that those types both
|
||||
originated from the same function declaration.
|
||||
* A function declared as
|
||||
``def inner(*args: TParams.args, **kwargs: TParams.kwargs) -> X``
|
||||
has type ``Callable[TParams, X]``.
|
||||
* A function of type ``Callable[P, R]`` can be called with ``(*args, **kwargs)``
|
||||
if and only if ``args`` has the type ``P.args`` and ``kwargs`` has the type
|
||||
``P.kwargs``\ , and that those types both originated from the same function
|
||||
declaration.
|
||||
* A function declared as ``def inner(*args: P.args, **kwargs: P.kwargs) -> X``
|
||||
has type ``Callable[P, X]``.
|
||||
|
||||
With these three properties, we now have the ability to fully type check
|
||||
parameter preserving decorators.
|
||||
|
||||
One additional form that we want to support is functions that pass only a subset
|
||||
of their arguments on to another function. To avoid shadowing a named or keyword
|
||||
only argument in the ``ParameterSpecification`` we require that the additional
|
||||
arguments be anonymous arguments that precede the ``*args`` and ``*kwargs``
|
||||
.. code-block::
|
||||
|
||||
def decorator(f: Callable[P, int]) -> Callable[P, None]:
|
||||
|
||||
def foo(*args: P.args, **kwargs: P.kwargs) -> None:
|
||||
|
||||
f(*args, **kwargs) # Accepted, should resolve to int
|
||||
|
||||
f(*kwargs, **args) # Rejected
|
||||
|
||||
f(1, *args, **kwargs) # Rejected
|
||||
|
||||
return foo # Accepted
|
||||
|
||||
To extend this to include ``Concatenate``, we declare the following properties:
|
||||
|
||||
* A function of type ``Callable[Concatenate[A, B, P], R]`` can only be
|
||||
called with ``(a, b, *args, **kwargs)`` when ``args`` and ``kwargs`` are the
|
||||
respective components of ``P``, ``a`` is of type ``A`` and ``b`` is of
|
||||
type ``B``.
|
||||
* A function declared as
|
||||
``def inner(a: A, b: B, *args: P.args, **kwargs: P.kwargs) -> R``
|
||||
has type ``Callable[Concatenate[A, B, P], R]``. Placing keyword-only
|
||||
parameters beterrn the ``*args`` and ``**kwargs`` is forbidden.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def call_n_times(
|
||||
__f: Callable[TParams, None],
|
||||
__n: int,
|
||||
*args: TParams.args,
|
||||
**kwargs: TParams.kwargs,
|
||||
) -> None:
|
||||
for x in range(__n);
|
||||
__f(*args, **kwargs)
|
||||
def add(f: Callable[P, int]) -> Callable[Concatenate[str, P], None]:
|
||||
|
||||
def foo(s: str, *args: P.args, **kwargs: P.kwargs) -> None: # Accepted
|
||||
pass
|
||||
|
||||
def bar(*args: P.args, s: str, **kwargs: P.kwargs) -> None: # Rejected
|
||||
pass
|
||||
|
||||
return foo # Accepted
|
||||
|
||||
|
||||
def remove(x: Callable[Concatenate[int, P], int]) -> Callable[P, None]:
|
||||
|
||||
def foo(*args: P.args, **kwargs: P.kwargs) -> None:
|
||||
f(1, *args, **kwargs) # Accepted
|
||||
|
||||
f(*args, 1, **kwargs) # Rejected
|
||||
|
||||
f(*args, **kwargs) # Rejected
|
||||
|
||||
return foo
|
||||
|
||||
Note that the names of the parameters preceding the ``ParamSpec``
|
||||
components are not mentioned in the resulting ``Concatenate``. This means that
|
||||
these parameters can not be addressed via a named argument:
|
||||
|
||||
.. code-block::
|
||||
|
||||
def outer(f: Callable[P, None]) -> Callable[P, None]:
|
||||
def foo(x: int, *args: P.args, **kwargs: P.kwargs) -> None:
|
||||
f(*args, **kwargs)
|
||||
|
||||
def bar(*args: P.args, **kwargs: P.kwargs) -> None:
|
||||
foo(1, *args, **kwargs) # Accepted
|
||||
foo(x=1, *args, **kwargs) # Rejected
|
||||
|
||||
return bar
|
||||
|
||||
.. _above:
|
||||
|
||||
This is not an implementation convenience, but a soundness requirement. If we
|
||||
were to allow that second calling style, then the following snippet would be
|
||||
problematic.
|
||||
|
||||
.. code-block::
|
||||
|
||||
@outer
|
||||
def problem(*, x: object) -> None:
|
||||
pass
|
||||
|
||||
problem(x="uh-oh")
|
||||
|
||||
Inside of ``bar``, we would get
|
||||
``TypeError: foo() got multiple values for argument 'x'``. Requiring these
|
||||
concatenated arguments to be addressed positionally avoids this kind of problem,
|
||||
and simplifies the syntax for spelling these types. Note that this also why we
|
||||
have to reject signatures of the form
|
||||
``(*args: P.args, s: str, **kwargs: P.kwargs)`` (See
|
||||
`Concatenating Keyword Parameters`_ for more details).
|
||||
|
||||
If one of these prepended positional parameters contains a free ``ParamSpec``\ ,
|
||||
we consider that variable in scope for the purposes of extracting the components
|
||||
of that ``ParamSpec``. That allows us to spell things like this:
|
||||
|
||||
.. code-block::
|
||||
|
||||
def twice(f: Callable[P, int], *args: P.args, **kwargs: P.kwargs) -> int:
|
||||
return f(*args, **kwargs) + f(*args, **kwargs)
|
||||
|
||||
The type of ``twice`` in the above example is
|
||||
``Callable[Concatenate[Callable[P, int], P], int]``, where ``P`` is bound by the
|
||||
outer ``Callable``. This has the following semantics:
|
||||
|
||||
.. code-block::
|
||||
|
||||
def a_int_b_str(a: int, b: str) -> int:
|
||||
pass
|
||||
|
||||
twice(a_int_b_str, 1, "A") # Accepted
|
||||
|
||||
twice(a_int_b_str, b="A", a=1) # Accepted
|
||||
|
||||
twice(a_int_b_str, "A", 1) # Rejected
|
||||
|
||||
|
||||
Backwards Compatibility
|
||||
-----------------------
|
||||
|
||||
The only changes necessary to existing features in ``typing`` is allowing these
|
||||
``ParameterSpecification`` objects to be the first parameter to ``Callable`` and
|
||||
to be a parameter to ``Generic``. Currently ``Callable`` expects a list of types
|
||||
there and ``Generic`` expects single types, so they are currently mutually
|
||||
exclusive. Otherwise, existing code that doesn't reference the new interfaces
|
||||
will be unaffected.
|
||||
``ParamSpec`` and ``Concatenate`` objects to be the first parameter to
|
||||
``Callable`` and to be a parameter to ``Generic``. Currently ``Callable``
|
||||
expects a list of types there and ``Generic`` expects single types, so they are
|
||||
currently mutually exclusive. Otherwise, existing code that doesn't reference
|
||||
the new interfaces will be unaffected.
|
||||
|
||||
Reference Implementation
|
||||
------------------------
|
||||
|
||||
The `Pyre <https://pyre-check.org/>`_ type checker supports
|
||||
``ParameterSpecification``\ s, ``.args`` and ``.kwargs`` in the context of
|
||||
functions. Support for use with ``Generic`` is not yet implemented. A reference
|
||||
implementation of the runtime components needed for those uses is provided in
|
||||
the ``pyre_extensions`` module.
|
||||
The `Pyre <https://pyre-check.org/>`_ type checker supports all of the behavior
|
||||
described above. A reference implementation of the runtime components needed
|
||||
for those uses is provided in the ``pyre_extensions`` module.
|
||||
|
||||
Rejected Alternatives
|
||||
---------------------
|
||||
|
@ -304,11 +557,11 @@ so:
|
|||
|
||||
.. code-block::
|
||||
|
||||
Treturn = typing.TypeVar(“Treturn”)
|
||||
R = typing.TypeVar(“R”)
|
||||
Tpositionals = ....
|
||||
Tkeywords = ...
|
||||
class BetterCallable(typing.Protocol[Tpositionals, Tkeywords, Treturn]):
|
||||
def __call__(*args: Tpositionals, **kwargs: Tkeywords) -> Treturn: ...
|
||||
class BetterCallable(typing.Protocol[Tpositionals, Tkeywords, R]):
|
||||
def __call__(*args: Tpositionals, **kwargs: Tkeywords) -> R: ...
|
||||
|
||||
However there are some problems with trying to come up with a consistent
|
||||
solution for those type variables for a given callable. This problem comes up
|
||||
|
@ -321,9 +574,9 @@ with even the simplest of callables:
|
|||
simple <: BetterCallable[[], {“x”: int}, None]
|
||||
BetterCallable[[int], [], None] </: BetterCallable[[], {“x”: int}, None]
|
||||
|
||||
Any time where a type can implement a protocol in more than one way that aren’t
|
||||
Any time where a type can implement a protocol in more than one way that aren't
|
||||
mutually compatible, we can run into situations where we lose information. If we
|
||||
were to make a decorator using this protocol, we have to pick one calling
|
||||
were to make a decorator using this protocol, we would have to pick one calling
|
||||
convention to prefer.
|
||||
|
||||
.. code-block::
|
||||
|
@ -335,40 +588,159 @@ convention to prefer.
|
|||
x = f(*args, **kwargs)
|
||||
return int_to_str(x)
|
||||
return decorated
|
||||
|
||||
@decorator
|
||||
def foo(x: int) -> int:
|
||||
return x
|
||||
|
||||
reveal_type(foo) # Option A: BetterCallable[[int], {}, str]
|
||||
# Option B: BetterCallable[[], {x: int}, str]
|
||||
foo(7) # fails under option B
|
||||
foo(x=7) # fails under option A
|
||||
|
||||
The core problem here is that, by default, parameters in Python can either be
|
||||
passed in positionally or as a keyword parameter. This means we really have
|
||||
called positionally or as a keyword argument. This means we really have
|
||||
three categories (positional-only, positional-or-keyword, keyword-only) we’re
|
||||
trying to jam into two categories. This is the same problem that we briefly
|
||||
mentioned when discussing ``.args`` and ``.kwargs``. Fundamentally, in order to
|
||||
capture two categories when there are some things that can be in either
|
||||
category, we need a higher level primitive (\ ``ParameterSpecification``\ ) to
|
||||
category, we need a higher level primitive (\ ``ParamSpec``\ ) to
|
||||
capture all three, and then split them out afterward.
|
||||
|
||||
Mutations on ParameterSpecifications
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Defining ParametersOf
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
There are still a class of decorators still not supported with these features:
|
||||
those that mutate (add/remove/change) the parameters of the given function.
|
||||
Defining operators that do these mutations becomes very complicated very
|
||||
quickly, as you have to deal with name collision issues much more prominently.
|
||||
We will defer that work until there is significant demand, and then we would be
|
||||
open to revisiting it.
|
||||
Another proposal we considered was defining ``ParametersOf`` and ``ReturnType``
|
||||
operators which would operate on a domain of a newly defined ``Function`` type.
|
||||
``Function`` would be callable with, and only with ``ParametersOf[F]``.
|
||||
``ParametersOf`` and ``ReturnType`` would only operate on type variables with
|
||||
precisely this bound. The combination of these three features could express
|
||||
everything that we can express with ``ParamSpecs``.
|
||||
|
||||
|
||||
.. code-block::
|
||||
|
||||
F = TypeVar("F", bound=Function)
|
||||
|
||||
def no_change(f: F) -> F:
|
||||
def inner(
|
||||
*args: ParametersOf[F].args,
|
||||
**kwargs: ParametersOf[F].kwargs
|
||||
) -> ReturnType[F]:
|
||||
return f(*args, **kwargs)
|
||||
return inner
|
||||
|
||||
def wrapping(f: F) -> Callable[ParametersOf[F], List[ReturnType[F]]]:
|
||||
def inner(
|
||||
*args: ParametersOf[F].args,
|
||||
**kwargs: ParametersOf[F].kwargs
|
||||
) -> List[ReturnType[F]]:
|
||||
return [f(*args, **kwargs)]
|
||||
return inner
|
||||
|
||||
def unwrapping(
|
||||
f: Callable[ParametersOf[F], List[R]]
|
||||
) -> Callable[ParametersOf[F], R]:
|
||||
def inner(
|
||||
*args: ParametersOf[F].args,
|
||||
**kwargs: ParametersOf[F].kwargs
|
||||
) -> R:
|
||||
return f(*args, **kwargs)[0]
|
||||
return inner
|
||||
|
||||
We decided to go with ``ParamSpec``\ s over this approach for several reasons:
|
||||
|
||||
* The footprint of this change would be larger, as we would need two new
|
||||
operators, and a new type, while ``ParamSpec`` just introduces a new variable.
|
||||
* Python typing has so far has avoided supporting operators, whether
|
||||
user-defined or built-in, in favor of destructuring. Accordingly,
|
||||
``ParamSpec`` based signatures look much more like existing Python.
|
||||
* The lack of user-defined operators makes common patterns hard to spell.
|
||||
``unwrapping`` is odd to read because ``F`` is not actually referring to any
|
||||
callable. It’s just being used as a container for the parameters we wish to
|
||||
propagate. It would read better if we could define an operator
|
||||
``RemoveList[List[X]] = X`` and then ``unwrapping`` could take ``F`` and
|
||||
return ``Callable[ParametersOf[F], RemoveList[ReturnType[F]]]``. Without
|
||||
that, we unfortunately get into a situation where we have to use a
|
||||
``Function``-variable as an improvised ``ParamSpec``, in that we never
|
||||
actually bind the return type.
|
||||
|
||||
In summary, between these two equivalently powerful syntaxes, ``ParamSpec`` fits
|
||||
much more naturally into the status quo.
|
||||
|
||||
.. _Concatenating Keyword Parameters:
|
||||
|
||||
Concatenating Keyword Parameters
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In principle the idea of concatenation as a means to modify a finite number of
|
||||
positional parameters could be expanded to include keyword parameters.
|
||||
|
||||
.. code-block::
|
||||
|
||||
def add_n(f: Callable[P, R]) -> Callable[Concatenate[("n", int), P], R]:
|
||||
def inner(*args: P.args, n: int, **kwargs: P.kwargs) -> R:
|
||||
# use n
|
||||
return f(*args, **kwargs)
|
||||
return inner
|
||||
|
||||
However, the key distinction is that while prepending positional-only parameters
|
||||
to a valid callable type always yields another valid callable type, the same
|
||||
cannot be said for adding keyword-only parameters. As alluded to above_ , the
|
||||
issue is name collisions. The parameters ``Concatenate[("n", int), P]`` are
|
||||
only valid when ``P`` itself does not already have a parameter named ``n``\ .
|
||||
|
||||
.. code-block::
|
||||
|
||||
def innocent_wrapper(f: Callable[P, R]) -> Callable[P, R]:
|
||||
def inner(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
added = add_n(f)
|
||||
return added(*args, n=1, **kwargs)
|
||||
return inner
|
||||
|
||||
@innocent_wrapper
|
||||
def problem(n: int) -> None:
|
||||
pass
|
||||
|
||||
Calling ``problem(2)`` works fine, but calling ``problem(n=2)`` leads to a
|
||||
``TypeError: problem() got multiple values for argument 'n'`` from the call to
|
||||
``added`` inside of ``innocent_wrapper``\ .
|
||||
|
||||
This kind of situation could be avoided, and this kind of decorator could be
|
||||
typed if we could reify the constraint that a set of parameters **not** contain
|
||||
a certain name, with something like:
|
||||
|
||||
.. code-block::
|
||||
|
||||
P_without_n = ParamSpec("P_without_n", banned_names=["n"])
|
||||
|
||||
def add_n(
|
||||
f: Callable[P_without_n, R]
|
||||
) -> Callable[Concatenate[("n", int), P_without_n], R]: ...
|
||||
|
||||
The call to ``add_n`` inside of ``innocent_wrapper`` could then be rejected
|
||||
since the callable was not guaranteed not to already have a parameter named
|
||||
``n``\ .
|
||||
|
||||
|
||||
However, enforcing these constraints would require enough additional
|
||||
implementation work that we judged this extension to be out of scope of this
|
||||
PEP. Fortunately the design of ``ParamSpec``\ s are such that we can return to
|
||||
this idea later if there is sufficient demand.
|
||||
|
||||
|
||||
Naming this a ``ParameterSpecification``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
We decided that ParameterSpecification was a little too long-winded for use
|
||||
here, and that this style of abbreviated name made it look more like TypeVar.
|
||||
|
||||
Naming this an ``ArgSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We think that calling this a ParameterSpecification is more correct than
|
||||
referring to it as an Argument Specification, since callables have parameters,
|
||||
We think that calling this a ParamSpec is more correct than
|
||||
referring to it as an ArgSpec, since callables have parameters,
|
||||
which are distinct from the arguments which are passed to them in a given call
|
||||
site. A given binding for a ParameterSpecification is a set of function
|
||||
site. A given binding for a ParamSpec is a set of function
|
||||
parameters, not a call-site’s arguments.
|
||||
|
||||
Acknowledgements
|
||||
|
|
Loading…
Reference in New Issue