PEP: 269 Title: Pgen Module for Python Author: Jonathan Riehl Status: Deferred Type: Standards Track Content-Type: text/x-rst Created: 24-Aug-2001 Python-Version: 2.2 Post-History: Abstract ======== Much like the ``parser`` module exposes the Python parser, this PEP proposes that the parser generator used to create the Python parser, ``pgen``, be exposed as a module in Python. Rationale ========= Through the course of Pythonic history, there have been numerous discussions about the creation of a Python compiler [1]_. These have resulted in several implementations of Python parsers, most notably the ``parser`` module currently provided in the Python standard library [2]_ and Jeremy Hylton's ``compiler`` module [3]_. However, while multiple language changes have been proposed [4]_ [5]_, experimentation with the Python syntax has lacked the benefit of a Python binding to the actual parser generator used to build Python. By providing a Python wrapper analogous to Fred Drake Jr.'s parser wrapper, but targeted at the ``pgen`` library, the following assertions are made: 1. Reference implementations of syntax changes will be easier to develop. Currently, a reference implementation of a syntax change would require the developer to use the ``pgen`` tool from the command line. The resulting parser data structure would then either have to be reworked to interface with a custom CPython implementation, or wrapped as a C extension module. 2. Reference implementations of syntax changes will be easier to distribute. Since the parser generator will be available in Python, it should follow that the resulting parser will accessible from Python. Therefore, reference implementations should be available as pure Python code, versus using custom versions of the existing CPython distribution, or as compilable extension modules. 3. Reference implementations of syntax changes will be easier to discuss with a larger audience. This somewhat falls out of the second assertion, since the community of Python users is most likely larger than the community of CPython developers. 4. Development of small languages in Python will be further enhanced, since the additional module will be a fully functional LL(1) parser generator. Specification ============= The proposed module will be called ``pgen``. The ``pgen`` module will contain the following functions: ``parseGrammarFile (fileName) -> AST`` -------------------------------------- The ``parseGrammarFile()`` function will read the file pointed to by fileName and create an AST object. The AST nodes will contain the nonterminal, numeric values of the parser generator meta-grammar. The output AST will be an instance of the AST extension class as provided by the ``parser`` module. Syntax errors in the input file will cause the SyntaxError exception to be raised. ``parseGrammarString (text) -> AST`` ------------------------------------ The ``parseGrammarString()`` function will follow the semantics of the ``parseGrammarFile()``, but accept the grammar text as a string for input, as opposed to the file name. ``buildParser (grammarAst) -> DFA`` ----------------------------------- The ``buildParser()`` function will accept an AST object for input and return a DFA (deterministic finite automaton) data structure. The DFA data structure will be a C extension class, much like the AST structure is provided in the ``parser`` module. If the input AST does not conform to the nonterminal codes defined for the ``pgen`` meta-grammar, ``buildParser()`` will throw a ``ValueError`` exception. ``parseFile (fileName, dfa, start) -> AST`` ------------------------------------------- The ``parseFile()`` function will essentially be a wrapper for the ``PyParser_ParseFile()`` C API function. The wrapper code will accept the DFA C extension class, and the file name. An AST instance that conforms to the lexical values in the ``token`` module and the nonterminal values contained in the DFA will be output. ``parseString (text, dfa, start) -> AST`` ----------------------------------------- The ``parseString()`` function will operate in a similar fashion to the ``parseFile()`` function, but accept the parse text as an argument. Much like ``parseFile()`` will wrap the ``PyParser_ParseFile()`` C API function, ``parseString()`` will wrap the ``PyParser_ParseString()`` function. ``symbolToStringMap (dfa) -> dict`` ----------------------------------- The ``symbolToStringMap()`` function will accept a DFA instance and return a dictionary object that maps from the DFA's numeric values for its nonterminals to the string names of the nonterminals as found in the original grammar specification for the DFA. ``stringToSymbolMap (dfa) -> dict`` ----------------------------------- The ``stringToSymbolMap()`` function output a dictionary mapping the nonterminal names of the input DFA to their corresponding numeric values. Extra credit will be awarded if the map generation functions and parsing functions are also methods of the DFA extension class. Implementation Plan =================== A cunning plan has been devised to accomplish this enhancement: 1. Rename the ``pgen`` functions to conform to the CPython naming standards. This action may involve adding some header files to the ``Include`` subdirectory. 2. Move the ``pgen`` C modules in the Makefile.pre.in from unique ``pgen`` elements to the Python C library. 3. Make any needed changes to the ``parser`` module so the AST extension class understands that there are AST types it may not understand. Cursory examination of the AST extension class shows that it keeps track of whether the tree is a suite or an expression. 3. Code an additional C module in the ``Modules`` directory. The C extension module will implement the DFA extension class and the functions outlined in the previous section. 4. Add the new module to the build process. Black magic, indeed. Limitations =========== Under this proposal, would be designers of Python 3000 will still be constrained to Python's lexical conventions. The addition, subtraction or modification of the Python lexer is outside the scope of this PEP. Reference Implementation ======================== No reference implementation is currently provided. A patch was provided at some point in http://sourceforge.net/tracker/index.php?func=detail&aid=599331&group_id=5470&atid=305470 but that patch is no longer maintained. References ========== .. [1] The (defunct) Python Compiler-SIG http://www.python.org/sigs/compiler-sig/ .. [2] Parser Module Documentation http://docs.python.org/library/parser.html .. [3] Hylton, Jeremy. http://docs.python.org/library/compiler.html .. [4] Pelletier, Michel. "Python Interface Syntax", :pep:`245` .. [5] The Python Types-SIG http://www.python.org/sigs/types-sig/ Copyright ========= This document has been placed in the public domain.