# Authors: David Goodger, Ueli Schlaepfer # Contact: goodger@users.sourceforge.net # Revision: $Revision$ # Date: $Date$ # Copyright: This module has been placed in the public domain. """ Transforms related to the front matter of a document (information found before the main text): - `DocTitle`: Used to transform a lone top level section's title to the document title, and promote a remaining lone top-level section's title to the document subtitle. - `DocInfo`: Used to transform a bibliographic field list into docinfo elements. """ __docformat__ = 'reStructuredText' import re from docutils import nodes, utils from docutils.transforms import TransformError, Transform class DocTitle(Transform): """ In reStructuredText_, there is no way to specify a document title and subtitle explicitly. Instead, we can supply the document title (and possibly the subtitle as well) implicitly, and use this two-step transform to "raise" or "promote" the title(s) (and their corresponding section contents) to the document level. 1. If the document contains a single top-level section as its first non-comment element, the top-level section's title becomes the document's title, and the top-level section's contents become the document's immediate contents. The lone top-level section header must be the first non-comment element in the document. For example, take this input text:: ================= Top-Level Title ================= A paragraph. Once parsed, it looks like this::
Top-Level Title <paragraph> A paragraph. After running the DocTitle transform, we have:: <document name="top-level title"> <title> Top-Level Title <paragraph> A paragraph. 2. If step 1 successfully determines the document title, we continue by checking for a subtitle. If the lone top-level section itself contains a single second-level section as its first non-comment element, that section's title is promoted to the document's subtitle, and that section's contents become the document's immediate contents. Given this input text:: ================= Top-Level Title ================= Second-Level Title ~~~~~~~~~~~~~~~~~~ A paragraph. After parsing and running the Section Promotion transform, the result is:: <document name="top-level title"> <title> Top-Level Title <subtitle name="second-level title"> Second-Level Title <paragraph> A paragraph. (Note that the implicit hyperlink target generated by the "Second-Level Title" is preserved on the "subtitle" element itself.) Any comment elements occurring before the document title or subtitle are accumulated and inserted as the first body elements after the title(s). """ default_priority = 320 def apply(self): if self.promote_document_title(): self.promote_document_subtitle() def promote_document_title(self): section, index = self.candidate_index() if index is None: return None document = self.document # Transfer the section's attributes to the document element (at root): document.attributes.update(section.attributes) document[:] = (section[:1] # section title + document[:index] # everything that was in the # document before the section + section[1:]) # everything that was in the section return 1 def promote_document_subtitle(self): subsection, index = self.candidate_index() if index is None: return None subtitle = nodes.subtitle() # Transfer the subsection's attributes to the new subtitle: subtitle.attributes.update(subsection.attributes) # Transfer the contents of the subsection's title to the subtitle: subtitle[:] = subsection[0][:] document = self.document document[:] = (document[:1] # document title + [subtitle] # everything that was before the section: + document[1:index] # everything that was in the subsection: + subsection[1:]) return 1 def candidate_index(self): """ Find and return the promotion candidate and its index. Return (None, None) if no valid candidate was found. """ document = self.document index = document.first_child_not_matching_class( nodes.PreBibliographic) if index is None or len(document) > (index + 1) or \ not isinstance(document[index], nodes.section): return None, None else: return document[index], index class DocInfo(Transform): """ This transform is specific to the reStructuredText_ markup syntax; see "Bibliographic Fields" in the `reStructuredText Markup Specification`_ for a high-level description. This transform should be run *after* the `DocTitle` transform. Given a field list as the first non-comment element after the document title and subtitle (if present), registered bibliographic field names are transformed to the corresponding DTD elements, becoming child elements of the "docinfo" element (except for a dedication and/or an abstract, which become "topic" elements after "docinfo"). For example, given this document fragment after parsing:: <document> <title> Document Title <field_list> <field> <field_name> Author <field_body> <paragraph> A. Name <field> <field_name> Status <field_body> <paragraph> $RCSfile$ ... After running the bibliographic field list transform, the resulting document tree would look like this:: <document> <title> Document Title <docinfo> <author> A. Name <status> frontmatter.py ... The "Status" field contained an expanded RCS keyword, which is normally (but optionally) cleaned up by the transform. The sole contents of the field body must be a paragraph containing an expanded RCS keyword of the form "$keyword: expansion text $". Any RCS keyword can be processed in any bibliographic field. The dollar signs and leading RCS keyword name are removed. Extra processing is done for the following RCS keywords: - "RCSfile" expands to the name of the file in the RCS or CVS repository, which is the name of the source file with a ",v" suffix appended. The transform will remove the ",v" suffix. - "Date" expands to the format "YYYY/MM/DD hh:mm:ss" (in the UTC time zone). The RCS Keywords transform will extract just the date itself and transform it to an ISO 8601 format date, as in "2000-12-31". (Since the source file for this text is itself stored under CVS, we can't show an example of the "Date" RCS keyword because we can't prevent any RCS keywords used in this explanation from being expanded. Only the "RCSfile" keyword is stable; its expansion text changes only if the file name changes.) """ default_priority = 340 def apply(self): document = self.document index = document.first_child_not_matching_class( nodes.PreBibliographic) if index is None: return candidate = document[index] if isinstance(candidate, nodes.field_list): biblioindex = document.first_child_not_matching_class( nodes.Titular) nodelist = self.extract_bibliographic(candidate) del document[index] # untransformed field list (candidate) document[biblioindex:biblioindex] = nodelist return def extract_bibliographic(self, field_list): docinfo = nodes.docinfo() bibliofields = self.language.bibliographic_fields labels = self.language.labels topics = {'dedication': None, 'abstract': None} for field in field_list: try: name = field[0][0].astext() normedname = utils.normalize_name(name) if not (len(field) == 2 and bibliofields.has_key(normedname) and self.check_empty_biblio_field(field, name)): raise TransformError biblioclass = bibliofields[normedname] if issubclass(biblioclass, nodes.TextElement): if not self.check_compound_biblio_field(field, name): raise TransformError utils.clean_rcs_keywords( field[1][0], self.rcs_keyword_substitutions) docinfo.append(biblioclass('', '', *field[1][0])) else: # multiple body elements possible if issubclass(biblioclass, nodes.authors): self.extract_authors(field, name, docinfo) elif issubclass(biblioclass, nodes.topic): if topics[normedname]: field[-1] += self.document.reporter.warning( 'There can only be one "%s" field.' % name, base_node=field) raise TransformError title = nodes.title(name, labels[normedname]) topics[normedname] = biblioclass( '', title, CLASS=normedname, *field[1].children) else: docinfo.append(biblioclass('', *field[1].children)) except TransformError: if len(field[-1]) == 1 \ and isinstance(field[-1][0], nodes.paragraph): utils.clean_rcs_keywords( field[-1][0], self.rcs_keyword_substitutions) docinfo.append(field) continue nodelist = [] if len(docinfo) != 0: nodelist.append(docinfo) for name in ('dedication', 'abstract'): if topics[name]: nodelist.append(topics[name]) return nodelist def check_empty_biblio_field(self, field, name): if len(field[-1]) < 1: field[-1] += self.document.reporter.warning( 'Cannot extract empty bibliographic field "%s".' % name, base_node=field) return None return 1 def check_compound_biblio_field(self, field, name): if len(field[-1]) > 1: field[-1] += self.document.reporter.warning( 'Cannot extract compound bibliographic field "%s".' % name, base_node=field) return None if not isinstance(field[-1][0], nodes.paragraph): field[-1] += self.document.reporter.warning( 'Cannot extract bibliographic field "%s" containing ' 'anything other than a single paragraph.' % name, base_node=field) return None return 1 rcs_keyword_substitutions = [ (re.compile(r'\$' r'Date: (\d\d\d\d)/(\d\d)/(\d\d) [\d:]+ \$$', re.IGNORECASE), r'\1-\2-\3'), (re.compile(r'\$' r'RCSfile: (.+),v \$$', re.IGNORECASE), r'\1'), (re.compile(r'\$[a-zA-Z]+: (.+) \$$'), r'\1'),] def extract_authors(self, field, name, docinfo): try: if len(field[1]) == 1: if isinstance(field[1][0], nodes.paragraph): authors = self.authors_from_one_paragraph(field) elif isinstance(field[1][0], nodes.bullet_list): authors = self.authors_from_bullet_list(field) else: raise TransformError else: authors = self.authors_from_paragraphs(field) authornodes = [nodes.author('', '', *author) for author in authors if author] if len(authornodes) > 1: docinfo.append(nodes.authors('', *authornodes)) elif len(authornodes) == 1: docinfo.append(authornodes[0]) else: raise TransformError except TransformError: field[-1] += self.document.reporter.warning( 'Bibliographic field "%s" incompatible with extraction: ' 'it must contain either a single paragraph (with authors ' 'separated by one of "%s"), multiple paragraphs (one per ' 'author), or a bullet list with one paragraph (one author) ' 'per item.' % (name, ''.join(self.language.author_separators)), base_node=field) raise def authors_from_one_paragraph(self, field): text = field[1][0].astext().strip() if not text: raise TransformError for authorsep in self.language.author_separators: authornames = text.split(authorsep) if len(authornames) > 1: break authornames = [author.strip() for author in authornames] authors = [[nodes.Text(author)] for author in authornames if author] return authors def authors_from_bullet_list(self, field): authors = [] for item in field[1][0]: if len(item) != 1 or not isinstance(item[0], nodes.paragraph): raise TransformError authors.append(item[0].children) if not authors: raise TransformError return authors def authors_from_paragraphs(self, field): for item in field[1]: if not isinstance(item, nodes.paragraph): raise TransformError authors = [item.children for item in field[1]] return authors