PEP: 228 Title: Reworking Python's Numeric Model Version: $Revision$ Author: pep@zadka.site.co.il (Moshe Zadka) Status: Draft Type: Standards Track Python-Version: ?? Created: 4-Nov-2000 Post-History: Abstract Today, Python's numerical model is similar to the C numeric model: there are several unrelated numerical types, and when operations between numerical types are requested, coercions happen. While the C rationale for the numerical model is that it is very similar to what happens on the hardware level, that rationale does not apply to Python. So, while it is acceptable to C programmers that 2/3 == 0, it is very surprising to Python programmers. Rationale In usability studies, one of Python features hardest to learn was the fact that integer division returns the floor of the division. This makes it hard to program correctly, requiring casts to float() in various parts through the code. Python's numerical model stems from C, while an easier numerical model would stem from the mathematical understanding of numbers. Other Numerical Models Perl's numerical model is that there is one type of numbers -- floating point numbers. While it is consistent and superficially non-surprising, it tends to have subtle gotchas. One of these is that printing numbers is very tricky, and requires correct rounding. In Perl, there is also a mode where all numbers are integers. This mode also has its share of problems, which arise from the fact that there is not even an approximate way of dividing numbers and getting meaningful answers. Suggested Interface For Python's Numerical Model While coercion rules will remain for add-on types and classes, the built in type system will have exactly one Python type -- a number. There are several things which can be considered "number methods": 1. isnatural() 2. isintegral() 3. isrational() 4. isreal() 5. iscomplex() a. isexact() Obviously, a number which answers m as true, also answers m+k as true. If "isexact()" is not true, then any answer might be wrong. (But not horribly wrong: it's close to the truth.) Now, there is two thing the models promises for the field operations (+, -, /, *): - If both operands satisfy isexact(), the result satisfies isexact(). - All field rules are true, except that for not-isexact() numbers, they might be only approximately true. There is one important operation, inexact() which takes a number and returns an inexact number which is a good approximation. Several of the classical Python operations will return exact numbers when given inexact numbers: e.g, int(). Inexact Operations The functions in the "math" module will be allowed to return inexact results for exact values. However, they will never return a non-real number. The functions in the "cmath" module will return the correct mathematical result. Numerical Python Issues People who use Numerical Python do so for high-performance vector operations. Therefore, NumPy should keep its hardware based numeric model. Unresolved Issues Which number literals will be exact, and which inexact? How do we deal with IEEE 754? Copyright This document has been placed in the public domain. Local Variables: mode: indented-text indent-tabs-mode: nil End: