python-peps/pep-0462.txt

727 lines
35 KiB
Plaintext

PEP: 462
Title: Core development workflow automation for CPython
Version: $Revision$
Last-Modified: $Date$
Author: Nick Coghlan <ncoghlan@gmail.com>
Status: Deferred
Type: Process
Content-Type: text/x-rst
Requires: 474
Created: 23-Jan-2014
Post-History: 25-Jan-2014, 27-Jan-2014, 01-Feb-2015
Abstract
========
This PEP proposes investing in automation of several of the tedious, time
consuming activities that are currently required for the core development
team to incorporate changes into CPython. This proposal is intended to
allow core developers to make more effective use of the time they have
available to contribute to CPython, which should also result in an improved
experience for other contributors that are reliant on the core team to get
their changes incorporated.
PEP Deferral
============
This PEP is currently deferred pending acceptance or rejection of the
Kallithea-based forge.python.org proposal in PEP 474.
Rationale for changes to the core development workflow
======================================================
The current core developer workflow to merge a new feature into CPython
on a POSIX system "works" as follows:
#. If applying a change submitted to bugs.python.org by another user, first
check they have signed the PSF Contributor Licensing Agreement. If not,
request that they sign one before continuing with merging the change.
#. Apply the change locally to a current checkout of the main CPython
repository (the change will typically have been discussed and reviewed
as a patch on bugs.python.org first, but this step is not currently
considered mandatory for changes originating directly from core
developers).
#. Run the test suite locally, at least ``make test`` or
``./python -m test`` (depending on system specs, this takes a few
minutes in the default configuration, but substantially longer if all
optional resources, like external network access, are enabled).
#. Run ``make patchcheck`` to fix any whitespace issues and as a reminder
of other changes that may be needed (such as updating Misc/ACKS or
adding an entry to Misc/NEWS)
#. Commit the change and push it to the main repository. If hg indicates
this would create a new head in the remote repository, run
``hg pull --rebase`` (or an equivalent). Theoretically, you should
rerun the tests at this point, but it's *very* tempting to skip that
step.
#. After pushing, monitor the `stable buildbots
<http://buildbot.python.org/all/waterfall?category=3.x.stable>`__
for any new failures introduced by your change. In particular, developers
on POSIX systems will often break the Windows buildbots, and vice-versa.
Less commonly, developers on Linux or Mac OS X may break other POSIX
systems.
The steps required on Windows are similar, but the exact commands used
will be different.
Rather than being simpler, the workflow for a bug fix is *more* complicated
than that for a new feature! New features have the advantage of only being
applied to the ``default`` branch, while bug fixes also need to be considered
for inclusion in maintenance branches.
* If a bug fix is applicable to Python 2.7, then it is also separately
applied to the 2.7 branch, which is maintained as an independent head
in Mercurial
* If a bug fix is applicable to the current 3.x maintenance release, then
it is first applied to the maintenance branch and then merged forward
to the default branch. Both branches are pushed to hg.python.org at the
same time.
Documentation patches are simpler than functional patches, but not
hugely so - the main benefit is only needing to check the docs build
successfully rather than running the test suite.
I would estimate that even when everything goes smoothly, it would still
take me at least 20-30 minutes to commit a bug fix patch that applies
cleanly. Given that it should be possible to automate several of these
tasks, I do not believe our current practices are making effective use
of scarce core developer resources.
There are many, many frustrations involved with this current workflow, and
they lead directly to some undesirable development practices.
* Much of this overhead is incurred on a per-patch applied basis. This
encourages large commits, rather than small isolated changes. The time
required to commit a 500 line feature is essentially the same as that
needed to commit a 1 line bug fix - the additional time needed for the
larger change appears in any preceding review rather than as part of the
commit process.
* The additional overhead of working on applying bug fixes creates an
additional incentive to work on new features instead, and new features
are already *inherently* more interesting to work on - they don't need
workflow difficulties giving them a helping hand!
* Getting a preceding review on bugs.python.org is *additional* work,
creating an incentive to commit changes directly, increasing the reliance
on post-review on the python-checkins mailing list.
* Patches on the tracker that are complete, correct and ready to merge may
still languish for extended periods awaiting a core developer with the
time to devote to getting it merged.
* The risk of push races (especially when pushing a merged bug fix) creates
a temptation to skip doing full local test runs (especially after a push
race has already been encountered once), increasing the chance of
breaking the buildbots.
* The buildbots are sometimes red for extended periods, introducing errors
into local test runs, and also meaning that they sometimes fail to serve
as a reliable indicator of whether or not a patch has introduced cross
platform issues.
* Post-conference development sprints are a nightmare, as they collapse
into a mire of push races. It's tempting to just leave patches on the
tracker until after the sprint is over and then try to clean them up
afterwards.
There are also many, many opportunities for core developers to make
mistakes that inconvenience others, both in managing the Mercurial branches
and in breaking the buildbots without being in a position to fix them
promptly. This both makes the existing core development team cautious in
granting new developers commit access, as well as making those new
developers cautious about actually making use of their increased level of
access.
There are also some incidental annoyances (like keeping the NEWS file up to
date) that will also be necessarily addressed as part of this proposal.
One of the most critical resources of a volunteer-driven open source project
is the emotional energy of its contributors. The current approach to change
incorporation doesn't score well on that front for anyone:
* For core developers, the branch wrangling for bug fixes is delicate and
easy to get wrong. Conflicts on the NEWS file and push races when
attempting to upload changes add to the irritation of something most of
us aren't being paid to spend time on (and for those that are, contributing
to CPython is likely to be only one of our responsibilities). The time we
spend actually getting a change merged is time we're not spending coding
additional changes, writing or updating documentation or reviewing
contributions from others.
* Red buildbots make life difficult for other developers (since a local
test failure may *not* be due to anything that developer did), release
managers (since they may need to enlist assistance cleaning up test
failures prior to a release) and for the developers themselves (since
it creates significant pressure to fix any failures we inadvertently
introduce right *now*, rather than at a more convenient time, as well
as potentially making ``hg bisect`` more difficult to use if
``hg annotate`` isn't sufficient to identify the source of a new failure).
* For other contributors, a core developer spending time actually getting
changes merged is a developer that isn't reviewing and discussing patches
on the issue tracker or otherwise helping others to contribute effectively.
It is especially frustrating for contributors that are accustomed to the
simplicity of a developer just being able to hit "Merge" on a pull
request that has already been automatically tested in the project's CI
system (which is a common workflow on sites like GitHub and BitBucket), or
where the post-review part of the merge process is fully automated (as is
the case for OpenStack).
Current Tools
=============
The following tools are currently used to manage various parts of the
CPython core development workflow.
* Mercurial (hg.python.org) for version control
* Roundup (bugs.python.org) for issue tracking
* Rietveld (also hosted on bugs.python.org) for code review
* Buildbot (buildbot.python.org) for automated testing
This proposal suggests replacing the use of Rietveld for code review with
the more full-featured Kallithea-based forge.python.org service proposed in
PEP 474. Guido has indicated that the original Rietveld implementation was
primarily intended as a public demonstration application for Google App
Engine, and switching to Kallithea will address some of the issues with
identifying intended target branches that arise when working with patch files
on Roundup and the associated reviews in the integrated Rietveld instance.
It also suggests the addition of new tools in order to automate
additional parts of the workflow, as well as a critical review of the
remaining tools to see which, if any, may be candidates for replacement.
Proposal
========
The essence of this proposal is that CPython aim to adopt a "core reviewer"
development model, similar to that used by the OpenStack project.
The workflow problems experienced by the CPython core development team are
not unique. The OpenStack infrastructure team have come up with a well
designed automated workflow that is designed to ensure:
* once a patch has been reviewed, further developer involvement is needed
only if the automated tests fail prior to merging
* patches never get merged without being tested relative to the current
state of the branch
* the main development branch always stays green. Patches that do not pass
the automated tests do not get merged
If a core developer wants to tweak a patch prior to merging, they download
it from the review tool, modify and *upload it back to the review tool*
rather than pushing it directly to the source code repository.
The core of this workflow is implemented using a tool called Zuul_, a
Python web service created specifically for the OpenStack project, but
deliberately designed with a plugin based trigger and action system to make
it easier to adapt to alternate code review systems, issue trackers and
CI systems. James Blair of the OpenStack infrastructure team provided
an `excellent overview of Zuul
<https://www.youtube.com/watch?v=sLD9LHc1QFM>`__ at linux.conf.au 2014.
While Zuul handles several workflows for OpenStack, the specific one of
interest for this PEP is the "merge gating" workflow.
For this workflow, Zuul is configured to monitor the Gerrit code review
system for patches which have been marked as "Approved". Once it sees
such a patch, Zuul takes it, and combines it into a queue of "candidate
merges". It then creates a pipeline of test runs that execute in parallel in
Jenkins (in order to allow more than 24 commits a day when a full test run
takes the better part of an hour), and are merged as they pass (and as all
the candidate merges ahead of them in the queue pass). If a patch fails the
tests, Zuul takes it out of the queue, cancels any test runs after that patch in
the queue, and rebuilds the queue without the failing patch.
If a developer looks at a test which failed on merge and determines that it
was due to an intermittent failure, they can then resubmit the patch for
another attempt at merging.
To adapt this process to CPython, it should be feasible to have Zuul monitor
Kallithea for approved pull requests (which may require a feature addition in
Kallithea), submit them to Buildbot for testing on the stable buildbots, and
then merge the changes appropriately in Mercurial. This idea poses a few
technical challenges, which have their own section below.
For CPython, I don't believe we will need to take advantage of Zuul's
ability to execute tests in parallel (certainly not in the initial
iteration - if we get to a point where serial testing of patches by the
merge gating system is our primary bottleneck rather than having the
people we need in order to be able to review and approve patches, then
that will be a very good day).
However, the merge queue itself is a very powerful concept that should
directly address several of the issues described in the Rationale above.
.. _Zuul: http://ci.openstack.org/zuul/
.. _Elastic recheck: http://status.openstack.org/elastic-recheck/
Deferred Proposals
==================
The OpenStack team also use Zuul to coordinate several other activities:
* Running preliminary "check" tests against patches posted to Gerrit.
* Creation of updated release artefacts and republishing documentation when
changes are merged
* The `Elastic recheck`_ feature that uses ElasticSearch in conjunction with
a spam filter to monitor test output and suggest the specific intermittent
failure that may have caused a test to fail, rather than requiring users
to search logs manually
While these are possibilities worth exploring in the future (and one of the
possible benefits I see to seeking closer coordination with the OpenStack
Infrastructure team), I don't see them as offering quite the same kind of
fundamental workflow improvement that merge gating appears to provide.
However, if we find we are having too many problems with intermittent test
failures in the gate, then introducing the "Elastic recheck" feature may
need to be considered as part of the initial deployment.
Suggested Variants
==================
Terry Reedy has suggested doing an initial filter which specifically looks
for approved documentation-only patches (~700 of the 4000+ open CPython
issues are pure documentation updates). This approach would avoid several
of the issues related to flaky tests and cross-platform testing, while
still allowing the rest of the automation flows to be worked out (such as
how to push a patch into the merge queue).
The key downside to this approach is that Zuul wouldn't have complete
control of the merge process as it usually expects, so there would
potentially be additional coordination needed around that.
It may be worth keeping this approach as a fallback option if the initial
deployment proves to have more trouble with test reliability than is
anticipated.
It would also be possible to tweak the merge gating criteria such that it
doesn't run the test suite if it detects that the patch hasn't modified any
files outside the "Docs" tree, and instead only checks that the documentation
builds without errors.
As yet another alternative, it may be reasonable to move some parts of the
documentation (such as the tutorial and the HOWTO guides) out of the main
source repository and manage them using the simpler pull request based model
described in PEP 474.
Perceived Benefits
==================
The benefits of this proposal accrue most directly to the core development
team. First and foremost, it means that once we mark a patch as "Approved"
in the updated code review system, *we're usually done*. The extra 20-30
minutes (or more) of actually applying the patch, running the tests and
merging it into Mercurial would all be orchestrated by Zuul. Push races
would also be a thing of the past - if lots of core developers are
approving patches at a sprint, then that just means the queue gets
deeper in Zuul, rather than developers getting frustrated trying to
merge changes and failing. Test failures would still happen, but they
would result in the affected patch being removed from the merge queue,
rather than breaking the code in the main repository.
With the bulk of the time investment moved to the review process, this
also encourages "development for reviewability" - smaller, easier to review
patches, since the overhead of running the tests multiple times will be
incurred by Zuul rather than by the core developers.
However, removing this time sink from the core development team should also
improve the experience of CPython development for other contributors, as it
eliminates several of the opportunities for patches to get "dropped on the
floor", as well as increasing the time core developers are likely to have
available for reviewing contributed patches.
Another example of benefits to other contributors is that when a sprint
aimed primarily at new contributors is running with just a single core
developer present (such as the sprints at PyCon AU for the last
few years), the merge queue would allow that developer to focus more of
their time on reviewing patches and helping the other contributors at the
sprint, since accepting a patch for inclusion would now be a single click
in the Rietveld UI, rather than the relatively time consuming process that
it is currently. Even when multiple core developers are present, it is
better to enable them to spend their time and effort on interacting with
the other sprint participants than it is on things that are sufficiently
mechanical that a computer can (and should) handle them.
With most of the ways to make a mistake when committing a change
automated out of existence, there are also substantially fewer new things to
learn when a contributor is nominated to become a core developer. This
should have a dual benefit, both in making the existing core developers more
comfortable with granting that additional level of responsibility, and in
making new contributors more comfortable with exercising it.
Finally, a more stable default branch in CPython makes it easier for
other Python projects to conduct continuous integration directly against the
main repo, rather than having to wait until we get into the release
candidate phase of a new release. At the moment, setting up such a system
isn't particularly attractive, as it would need to include an additional
mechanism to wait until CPython's own Buildbot fleet indicated that the
build was in a usable state. With the proposed merge gating system, the
trunk always remains usable.
Technical Challenges
====================
Adapting Zuul from the OpenStack infrastructure to the CPython
infrastructure will at least require the development of additional
Zuul trigger and action plugins, and may require additional development
in some of our existing tools.
Kallithea vs Gerrit
-------------------
Kallithea does not currently include a voting/approval feature that is
equivalent to Gerrit's. For CPython, we wouldn't need anything as
sophisticated as Gerrit's voting system - a simple core-developer-only
"Approved" marker to trigger action from Zuul should suffice. The
core-developer-or-not flag is available in Roundup, as is the flag
indicating whether or not the uploader of a patch has signed a PSF
Contributor Licensing Agreement, which may require further development to
link contributor accounts between the Kallithea instance and Roundup.
We would likely also want to improve the existing patch handling,
in particular looking at how the Roundup/Reitveld integration handles cases
where it can't figure out a suitable base version to use when generating
the review (if Rietveld gains the ability to nominate a particular target
repository and branch for a patch, then this may be relatively easy to
resolve).
Some of the existing Zuul triggers work by monitoring for particular comments
(in particular, recheck/reverify comments to ask Zuul to try merging a
change again if it was previously rejected due to an unrelated intermittent
failure). We will likely also want similar explicit triggers for Kallithea.
The current Zuul plugins for Gerrit work by monitoring the Gerrit activity
stream for particular events. If Kallithea has no equivalent, we will need
to add something suitable for the events we would like to trigger on.
There would also be development effort needed to create a Zuul plugin
that monitors Kallithea activity rather than Gerrit.
Mercurial vs Gerrit/git
-----------------------
Gerrit uses git as the actual storage mechanism for patches, and
automatically handles merging of approved patches. By contrast, Kallithea
use the RhodeCode created `vcs <https://pythonhosted.org/vcs/>` library as
an abstraction layer over specific DVCS implementations (with Mercurial and
git backends currently available).
Zuul is also directly integrated with git for patch manipulation - as far
as I am aware, this part of the design currently isn't pluggable. However,
at PyCon US 2014, the Mercurial core developers at the sprints expressed
some interest in collaborating with the core development team and the Zuul
developers on enabling the use of Zuul with Mercurial in addition to git.
As Zuul is itself a Python application, migrating it to use the same DVCS
abstraction library as RhodeCode and Kallithea may be a viable path towards
achieving that.
Buildbot vs Jenkins
-------------------
Zuul's interaction with the CI system is also pluggable, using Gearman
as the `preferred interface <http://ci.openstack.org/zuul/launchers.html>`__.
Accordingly, adapting the CI jobs to run in Buildbot rather than Jenkins
should just be a matter of writing a Gearman client that can process the
requests from Zuul and pass them on to the Buildbot master. Zuul uses the
pure Python `gear client library <https://pypi.python.org/pypi/gear>`__ to
communicate with Gearman, and this library should also be useful to handle
the Buildbot side of things.
Note that, in the initial iteration, I am proposing that we *do not*
attempt to pipeline test execution. This means Zuul would be running in
a very simple mode where only the patch at the head of the merge queue
is being tested on the Buildbot fleet, rather than potentially testing
several patches in parallel. I am picturing something equivalent to
requesting a forced build from the Buildbot master, and then waiting for
the result to come back before moving on to the second patch in the queue.
If we ultimately decide that this is not sufficient, and we need to start
using the CI pipelining features of Zuul, then we may need to look at moving
the test execution to dynamically provisioned cloud images, rather than
relying on volunteer maintained statically provisioned systems as we do
currently. The OpenStack CI infrastructure team are exploring the idea of
replacing their current use of Jenkins masters with a simpler pure Python
test runner, so if we find that we can't get Buildbot to effectively
support the pipelined testing model, we'd likely participate in that
effort rather than setting up a Jenkins instance for CPython.
In this case, the main technical risk would be a matter of ensuring we
support testing on platforms other than Linux (as our stable buildbots
currently cover Windows, Mac OS X, FreeBSD and OpenIndiana in addition to a
couple of different Linux variants).
In such a scenario, the Buildbot fleet would still have a place in doing
"check" runs against the master repository (either periodically or for
every commit), even if it did not play a part in the merge gating process.
More unusual configurations (such as building without threads, or without
SSL/TLS support) would likely still be handled that way rather than being
included in the gate criteria (at least initially, anyway).
Handling of maintenance branches
--------------------------------
The OpenStack project largely leaves the question of maintenance branches
to downstream vendors, rather than handling it directly. This means there
are questions to be answered regarding how we adapt Zuul to handle our
maintenance branches.
Python 2.7 can be handled easily enough by treating it as a separate patch
queue. This would be handled natively in Kallithea by submitting separate
pull requests in order to update the Python 2.7 maintenance branch.
The Python 3.x maintenance branches are potentially more complicated. My
current recommendation is to simply stop using Mercurial merges to manage
them, and instead treat them as independent heads, similar to the Python
2.7 branch. Separate pull requests would need to be submitted for the active
Python 3 maintenance branch and the default development branch. The
downside of this approach is that it increases the risk that a fix is merged
only to the maintenance branch without also being submitted to the default
branch, so we may want to design some additional tooling that ensures that
every maintenance branch pull request either has a corresponding default
branch pull request prior to being merged, or else has an explicit disclaimer
indicating that it is only applicable to that branch and doesn't need to be
ported forward to later branches.
Such an approach has the benefit of adjusting relatively cleanly to the
intermittent periods where we have two active Python 3 maintenance branches.
This issue does suggest some potential user interface ideas for Kallithea,
where it may be desirable to be able to clone a pull request in order to be
able to apply it to a second branch.
Handling of security branches
-----------------------------
For simplicity's sake, I would suggest leaving the handling of
security-fix only branches alone: the release managers for those branches
would continue to backport specific changes manually. The only change is
that they would be able to use the Kallithea pull request workflow to do the
backports if they would like others to review the updates prior to merging
them.
Handling of NEWS file updates
-----------------------------
Our current approach to handling NEWS file updates regularly results in
spurious conflicts when merging bug fixes forward from an active maintenance
branch to a later branch.
`Issue #18967* <http://bugs.python.org/issue18967>`__ discusses some
possible improvements in that area, which would be beneficial regardless
of whether or not we adopt Zuul as a workflow automation tool.
Stability of "stable" Buildbot slaves
-------------------------------------
Instability of the nominally stable buildbots has a substantially larger
impact under this proposal. We would need to ensure we're genuinely happy
with each of those systems gating merges to the development branches, or
else move then to "unstable" status.
Intermittent test failures
--------------------------
Some tests, especially timing tests, exhibit intermittent failures on the
existing Buildbot fleet. In particular, test systems running as VMs may
sometimes exhibit timing failures when the VM host is under higher than
normal load.
The OpenStack CI infrastructure includes a number of additional features to
help deal with intermittent failures, the most basic of which is simply
allowing developers to request that merging a patch be tried again when the
original failure appears to be due to a known intermittent failure (whether
that intermittent failure is in OpenStack itself or just in a flaky test).
The more sophisticated `Elastic recheck`_ feature may be worth considering,
especially since the output of the CPython test suite is substantially
simpler than that from OpenStack's more complex multi-service testing, and
hence likely even more amenable to automated analysis.
Custom Mercurial client workflow support
----------------------------------------
One useful part of the OpenStack workflow is the "git review" plugin,
which makes it relatively easy to push a branch from a local git clone up
to Gerrit for review.
PEP 474 mentions a draft `custom Mercurial
extension <https://bitbucket.org/ncoghlan/cpydev/src/default/cpyhg.py?at=default>`__
that automates some aspects of the existing CPython core development workflow.
As part of this proposal, that custom extension would be extended to work
with the new Kallithea based review workflow in addition to the legacy
Roundup/Rietveld based review workflow.
Social Challenges
=================
The primary social challenge here is getting the core development team to
change their practices. However, the tedious-but-necessary steps that are
automated by the proposal should create a strong incentive for the
existing developers to go along with the idea.
I believe three specific features may be needed to assure existing
developers that there are no downsides to the automation of this workflow:
* Only requiring approval from a single core developer to incorporate a
patch. This could be revisited in the future, but we should preserve the
status quo for the initial rollout.
* Explicitly stating that core developers remain free to approve their own
patches, except during the release candidate phase of a release. This
could be revisited in the future, but we should preserve the status quo
for the initial rollout.
* Ensuring that at least release managers have a "merge it now" capability
that allows them to force a particular patch to the head of the merge
queue. Using a separate clone for release preparation may be sufficient
for this purpose. Longer term, automatic merge gating may also allow for
more automated preparation of release artefacts as well.
Practical Challenges
====================
The PSF runs its own directly and indirectly sponsored workflow
infrastructure primarily due to past experience with unacceptably poor
performance and inflexibility of infrastructure provided for free to the
general public. CPython development was originally hosted on SourceForge,
with source control moved to self hosting when SF was both slow to offer
Subversion support and suffering from CVS performance issues (see PEP 347),
while issue tracking later moved to the open source Roundup issue tracker
on dedicated sponsored hosting (from Upfront Systems), due to a combination
of both SF performance issues and general usability issues with the SF
tracker at the time (the outcome and process for the new tracker selection
were captured on the `python.org wiki
<https://wiki.python.org/moin/CallForTrackers>`__ rather than in a PEP).
Accordingly, proposals that involve setting ourselves up for "SourceForge
usability and reliability issues, round two" will face significant
opposition from at least some members of the CPython core development team
(including the author of this PEP). This proposal respects that history by
recommending only tools that are available for self-hosting as sponsored
or PSF funded infrastructure, and are also open source Python projects that
can be customised to meet the needs of the CPython core development team.
However, for this proposal to be a success (if it is accepted), we need to
understand how we are going to carry out the necessary configuration,
customisation, integration and deployment work.
The last attempt at adding a new piece to the CPython support infrastructure
(speed.python.org) has unfortunately foundered due to the lack of time to
drive the project from the core developers and PSF board members involved,
and the difficulties of trying to bring someone else up to speed to lead
the activity (the hardware donated to that project by HP is currently in
use to support PyPy instead, but the situation highlights some
of the challenges of relying on volunteer labour with many other higher
priority demands on their time to steer projects to completion).
Even ultimately successful past projects, such as the source control
migrations from CVS to Subversion and from Subversion to Mercurial, the
issue tracker migration from SourceForge to Roundup, the code review
integration between Roundup and Rietveld and the introduction of the
Buildbot continuous integration fleet, have taken an extended period of
time as volunteers worked their way through the many technical and social
challenges involved.
Accordingly, one possible outcome of this proposal may be a recommendation
to the PSF to investigate how to sustain direct investment in ongoing paid
development on CPython workflow tools, similar to the ongoing funded
development that supports the continuous integration infrastructure for
OpenStack. Some possible approaches include:
* the PSF funding part-time or contract based development on CPython workflow
tools, either on an ad hoc basic through the existing grants program, or
on a more permanent basis, collaborating with the CPython core development
team to determine the scope of the desired improvements.
* discussing a possible partnership with the OpenStack Foundation to
collaborate on shared tool development that ultimately benefits both
organisations (for example, the OpenStack infrastructure team aren't
especially happy with the maintainability challenges posed by Gerrit, so
improvements to Rietveld to make it a viable candidate for replacing
Gerrit may be something they would be interested in).
* PSF (and OpenStack) sponsor members allocating part-time or full-time
staff to work on improving the CPython workflow tools, similar to the way
such staff are allocated to improving OpenStack workflow tools.
Note that this model of directing paid development efforts at improving the
tools that support the contributions of volunteers is also one of the
known ways to incorporate funded development into a primarily volunteer
driven project without creating resentment between unpaid and paid
contributors: it's harder to resent people that are being paid specifically
to make the tools, workflow and general experience more pleasant for the
unpaid contributors.
Open Questions
==============
Pretty much everything in the PEP. Do we want to adopt merge gating and
Zuul? How do we want to address the various technical challenges?
Are the Kallithea and Zuul development communities open to the kind
of collaboration that would be needed to make this effort a success?
Assuming we do want to do it (or something like it), how is the work going
to get done? Do we try to get it done solely as a volunteer effort? Do we
put together a grant proposal for the PSF board to consider (assuming we can
find people willing and available to do the work)?
Do we approach the OpenStack Foundation for assistance, since
we're a key dependency of OpenStack itself, Zuul is a creation of the
OpenStack infrastructure team, and the available development resources for
OpenStack currently dwarf those for CPython?
Do those of us working for Python redistributors and major users (including
me), attempt to make the business case to our superiors for investing
developer time in supporting this effort?
Next Steps
==========
If pursued, this will be a follow-on project to the Kallithea-based
forge.python.org proposal in PEP 474. Refer to that PEP for more details
on the discussion, review and proof-of-concept pilot process currently
under way.
Acknowledgements
================
Thanks to Jesse Noller, Alex Gaynor and James Blair for providing valuable
feedback on a preliminary draft of this proposal, and to James and Monty
Taylor for additional technical feedback following publication of the
initial draft.
Thanks to Bradley Kuhn, Mads Kiellerich and other Kallithea developers for
the discussions around PEP 474 that led to a significant revision of this
proposal to be based on using Kallithea for the review component rather than
the existing Rietveld installation.
Copyright
=========
This document has been placed in the public domain.
..
Local Variables:
mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70
coding: utf-8
End: