python-peps/pep-0558.rst

942 lines
44 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

PEP: 558
Title: Defined semantics for locals()
Author: Nick Coghlan <ncoghlan@gmail.com>
BDFL-Delegate: Nathaniel J. Smith
Discussions-To: <python-dev@python.org>
Status: Draft
Type: Standards Track
Content-Type: text/x-rst
Created: 08-Sep-2017
Python-Version: 3.11
Post-History: 2017-09-08, 2019-05-22, 2019-05-30, 2019-12-30, 2021-07-18
Abstract
========
The semantics of the ``locals()`` builtin have historically been underspecified
and hence implementation dependent.
This PEP proposes formally standardising on the behaviour of the CPython 3.10
reference implementation for most execution scopes, with some adjustments to the
behaviour at function scope to make it more predictable and independent of the
presence or absence of tracing functions.
In addition, it proposes that the following functions be added to the stable
Python C API/ABI::
typedef enum {
PyLocals_UNDEFINED = -1,
PyLocals_DIRECT_REFERENCE = 0,
PyLocals_SHALLOW_COPY = 1
} PyLocals_Kind;
PyLocals_Kind PyLocals_GetKind();
PyObject * PyLocals_Get();
PyObject * PyLocals_GetCopy();
PyObject * PyLocals_GetView();
It also proposes the addition of several supporting functions and type
definitions to the CPython C API.
Rationale
=========
While the precise semantics of the ``locals()`` builtin are nominally undefined,
in practice, many Python programs depend on it behaving exactly as it behaves in
CPython (at least when no tracing functions are installed).
Other implementations such as PyPy are currently replicating that behaviour,
up to and including replication of local variable mutation bugs that
can arise when a trace hook is installed [1]_.
While this PEP considers CPython's current behaviour when no trace hooks are
installed to be largely acceptable, it considers the current
behaviour when trace hooks are installed to be problematic, as it causes bugs
like [1]_ *without* even reliably enabling the desired functionality of allowing
debuggers like ``pdb`` to mutate local variables [3]_.
Review of the initial PEP and the draft implementation then identified an
opportunity for simplification of both the documentation and implementation
of the function level ``locals()`` behaviour by updating it to return an
independent snapshot of the function locals and closure variables on each
call, rather than continuing to return the semi-dynamic intermittently updated
shared copy that it has historically returned in CPython.
Proposal
========
The expected semantics of the ``locals()`` builtin change based on the current
execution scope. For this purpose, the defined scopes of execution are:
* module scope: top-level module code, as well as any other code executed using
``exec()`` or ``eval()`` with a single namespace
* class scope: code in the body of a ``class`` statement, as well as any other
code executed using ``exec()`` or ``eval()`` with separate local and global
namespaces
* function scope: code in the body of a ``def`` or ``async def`` statement,
or any other construct that creates an optimized code block in CPython (e.g.
comprehensions, lambda functions)
This PEP proposes elevating most of the current behaviour of the CPython
reference implementation to become part of the language specification, *except*
that each call to ``locals()`` at function scope will create a new dictionary
object, rather than caching a common dict instance in the frame object that
each invocation will update and return.
This PEP also proposes to largely eliminate the concept of a separate "tracing"
mode from the CPython reference implementation. In releases up to and including
Python 3.10, the CPython interpreter behaves differently when a trace hook has
been registered in one or more threads via an implementation dependent mechanism
like ``sys.settrace`` ([4]_) in CPython's ``sys`` module or
``PyEval_SetTrace`` ([5]_) in CPython's C API.
This PEP proposes changes to CPython's behaviour at function scope that make
the ``locals()`` builtin semantics when a trace hook is registered identical to
those used when no trace hook is registered, while also making the related frame
API semantics clearer and easier for interactive debuggers to rely on.
The proposed elimination of tracing mode affects the semantics of frame object
references obtained through other means, such as via a traceback, or via the
``sys._getframe()`` API, as the write-through semantics needed for trace hook
support are always provided by the ``f_locals`` attribute on frame objects,
rather than being runtime state dependent.
New ``locals()`` documentation
------------------------------
The heart of this proposal is to revise the documentation for the ``locals()``
builtin to read as follows:
Return a mapping object representing the current local symbol table, with
variable names as the keys, and their currently bound references as the
values.
At module scope, as well as when using ``exec()`` or ``eval()`` with a
single namespace, this function returns the same namespace as ``globals()``.
At class scope, it returns the namespace that will be passed to the
metaclass constructor.
When using ``exec()`` or ``eval()`` with separate local and global
namespaces, it returns the local namespace passed in to the function call.
In all of the above cases, each call to ``locals()`` in a given frame of
execution will return the *same* mapping object. Changes made through
the mapping object returned from ``locals()`` will be visible as bound,
rebound, or deleted local variables, and binding, rebinding, or deleting
local variables will immediately affect the contents of the returned mapping
object.
At function scope (including for generators and coroutines), each call to
``locals()`` instead returns a fresh dictionary containing the current
bindings of the function's local variables and any nonlocal cell references.
In this case, name binding changes made via the returned dict are *not*
written back to the corresponding local variables or nonlocal cell
references, and binding, rebinding, or deleting local variables and nonlocal
cell references does *not* affect the contents of previously returned
dictionaries.
There would also be a versionchanged note for the release making this change:
In prior versions, the semantics of mutating the mapping object returned
from ``locals()`` were formally undefined. In CPython specifically,
the mapping returned at function scope could be implicitly refreshed by
other operations, such as calling ``locals()`` again, or the interpreter
implicitly invoking a Python level trace function. Obtaining the legacy
CPython behaviour now requires explicit calls to update the initially
returned dictionary with the results of subsequent calls to ``locals()``.
For reference, the current documentation of this builtin reads as follows:
Update and return a dictionary representing the current local symbol table.
Free variables are returned by locals() when it is called in function
blocks, but not in class blocks.
Note: The contents of this dictionary should not be modified; changes may
not affect the values of local and free variables used by the interpreter.
(In other words: the status quo is that the semantics and behaviour of
``locals()`` are formally implementation defined, whereas the proposed
state after this PEP is that the only implementation defined behaviour will be
that associated with whether or not the implementation emulates the CPython
frame API, with the behaviour in all other cases being defined by the language
and library references)
Module scope
------------
At module scope, as well as when using ``exec()`` or ``eval()`` with a
single namespace, ``locals()`` must return the same object as ``globals()``,
which must be the actual execution namespace (available as
``inspect.currentframe().f_locals`` in implementations that provide access
to frame objects).
Variable assignments during subsequent code execution in the same scope must
dynamically change the contents of the returned mapping, and changes to the
returned mapping must change the values bound to local variable names in the
execution environment.
To capture this expectation as part of the language specification, the following
paragraph will be added to the documentation for ``locals()``:
At module scope, as well as when using ``exec()`` or ``eval()`` with a
single namespace, this function returns the same namespace as ``globals()``.
This part of the proposal does not require any changes to the reference
implementation - it is standardisation of the current behaviour.
Class scope
-----------
At class scope, as well as when using ``exec()`` or ``eval()`` with separate
global and local namespaces, ``locals()`` must return the specified local
namespace (which may be supplied by the metaclass ``__prepare__`` method
in the case of classes). As for module scope, this must be a direct reference
to the actual execution namespace (available as
``inspect.currentframe().f_locals`` in implementations that provide access
to frame objects).
Variable assignments during subsequent code execution in the same scope must
change the contents of the returned mapping, and changes to the returned mapping
must change the values bound to local variable names in the
execution environment.
The mapping returned by ``locals()`` will *not* be used as the actual class
namespace underlying the defined class (the class creation process will copy
the contents to a fresh dictionary that is only accessible by going through the
class machinery).
For nested classes defined inside a function, any nonlocal cells referenced from
the class scope are *not* included in the ``locals()`` mapping.
To capture this expectation as part of the language specification, the following
two paragraphs will be added to the documentation for ``locals()``:
When using ``exec()`` or ``eval()`` with separate local and global
namespaces, [this function] returns the given local namespace.
At class scope, it returns the namespace that will be passed to the metaclass
constructor.
This part of the proposal does not require any changes to the reference
implementation - it is standardisation of the current behaviour.
Function scope
--------------
At function scope, interpreter implementations are granted significant freedom
to optimise local variable access, and hence are NOT required to permit
arbitrary modification of local and nonlocal variable bindings through the
mapping returned from ``locals()``.
Historically, this leniency has been described in the language specification
with the words "The contents of this dictionary should not be modified; changes
may not affect the values of local and free variables used by the interpreter."
This PEP proposes to change that text to instead say:
At function scope (including for generators and coroutines), each call to
``locals()`` instead returns a fresh dictionary containing the current
bindings of the function's local variables and any nonlocal cell references.
In this case, name binding changes made via the returned dict are *not*
written back to the corresponding local variables or nonlocal cell
references, and binding, rebinding, or deleting local variables and nonlocal
cell references does *not* affect the contents of previously returned
dictionaries.
This part of the proposal *does* require changes to the CPython reference
implementation, as CPython currently returns a shared mapping object that may
be implicitly refreshed by additional calls to ``locals()``, and the
"write back" strategy currently used to support namespace changes
from trace functions also doesn't comply with it (and causes the quirky
behavioural problems mentioned in the Rationale).
CPython Implementation Changes
==============================
Summary of proposed implementation-specific changes
---------------------------------------------------
* Changes are made as necessary to provide the updated Python level semantics
* Two new functions are added to the stable ABI to replicate the updated
behaviour of the Python ``locals()`` builtin::
PyObject * PyLocals_Get();
PyLocals_Kind PyLocals_GetKind();
* One new function is added to the stable ABI to efficiently get a snapshot of
the local namespace in the running frame::
PyObject * PyLocals_GetCopy();
* One new function is added to the stable ABI to get a read-only view of the
local namespace in the running frame::
PyObject * PyLocals_GetView();
* Corresponding frame accessor functions for these new public APIs are added to
the CPython frame C API
* On optimised frames, the Python level ``f_locals`` API will become a direct
read/write proxy for the frame's local and closure variable storage, but
will use the C level ``f_locals`` struct field to hold a value cache that
also allows for storage of arbitrary additional keys. Additional details on
the expected behaviour of that fast locals proxy are given below.
* No C API function is added to get access to a mutable mapping for the local
namespace. Instead, ``PyObject_GetAttrString(frame, "f_locals")`` is used, the
same API as is used in Python code.
* ``PyEval_GetLocals()`` remains supported and does not emit a programmatic
warning, but will be deprecated in the documentation in favour of the new
APIs
* ``PyFrame_FastToLocals()`` and ``PyFrame_FastToLocalsWithError()`` remain
supported and do not emit a programmatic warning, but will be deprecated in
the documentation in favour of the new APIs
* ``PyFrame_LocalsToFast()`` always raises ``RuntimeError()``, indicating that
``PyObject_GetAttrString(frame, "f_locals")`` should be used to obtain a
mutable read/write mapping for the local variables.
* The trace hook implementation will no longer call ``PyFrame_FastToLocals()``
implicitly. The version porting guide will recommend migrating to
``PyFrame_GetLocalsView()`` for read-only access and
``PyObject_GetAttrString(frame, "f_locals")`` for read/write access.
Providing the updated Python level semantics
--------------------------------------------
The implementation of the ``locals()`` builtin is modified to return a distinct
copy of the local namespace rather than a direct reference to the internal
dynamically updated snapshot returned by ``PyEval_GetLocals()``.
Resolving the issues with tracing mode behaviour
------------------------------------------------
The current cause of CPython's tracing mode quirks (both the side effects from
simply installing a tracing function and the fact that writing values back to
function locals only works for the specific function being traced) is the way
that locals mutation support for trace hooks is currently implemented: the
``PyFrame_LocalsToFast`` function.
When a trace function is installed, CPython currently does the following for
function frames (those where the code object uses "fast locals" semantics):
1. Calls ``PyFrame_FastToLocals`` to update the dynamic snapshot
2. Calls the trace hook (with tracing of the hook itself disabled)
3. Calls ``PyFrame_LocalsToFast`` to capture any changes made to the dynamic
snapshot
This approach is problematic for a few different reasons:
* Even if the trace function doesn't mutate the snapshot, the final step resets
any cell references back to the state they were in before the trace function
was called (this is the root cause of the bug report in [1]_)
* If the trace function *does* mutate the snapshot, but then does something
that causes the snapshot to be refreshed, those changes are lost (this is
one aspect of the bug report in [3]_)
* If the trace function attempts to mutate the local variables of a frame other
than the one being traced (e.g. ``frame.f_back.f_locals``), those changes
will almost certainly be lost (this is another aspect of the bug report in
[3]_)
* If a ``locals()`` reference is passed to another function, and *that*
function mutates the snapshot namespace, then those changes *may* be written
back to the execution frame *if* a trace hook is installed
The proposed resolution to this problem is to take advantage of the fact that
whereas functions typically access their *own* namespace using the language
defined ``locals()`` builtin, trace functions necessarily use the implementation
dependent ``frame.f_locals`` interface, as a frame reference is what gets
passed to hook implementations.
Instead of being a direct reference to the internal dynamic snapshot used to
populate the independent snapshots returned by ``locals()``, the Python level
``frame.f_locals`` will be updated to instead return a dedicated proxy type
that has two internal attributes not exposed as part of the Python runtime
API:
* *frame*: the underlying frame that the snapshot is for
* *fast_refs*: a mapping from variable names to either fast local storage
offsets (for local variables) or to closure cells (for closure variables).
This mapping is lazily initialized on the first read or write access through
the proxy, rather than being eagerly populated as soon as the proxy is created.
The C level ``f_locals`` attribute on the frame object is treated as a cache
by the fast locals proxy, as some operations (such as equality comparisons)
require a regular dictionary mapping from names to their respective values.
Fast local variables and cell variables are stored in the cache if they are
currently bound to a value. Arbitrary additional attributes may also be stored
in the cache. It *is* possible for the cache to get out of sync with the actual
frame state (e.g. as code executes binding and unbinding operations, or if
changes are made directly to the cache dict). A dedicated ``sync_frame_cache()``
method is provided that runs ``PyFrame_FastToLocalsWithError()`` to ensure the
cache is consistent with the current frame state.
``__getitem__`` operations on the proxy will populate the ``fast_refs`` mapping
(if it is not already populated), and then either return the relevant value
(if the key is found in either the ``fast_refs`` mapping or the ``f_locals``
dynamic snapshot stored on the frame), or else raise ``KeyError``. Variables
that are defined but not currently bound raise ``KeyError`` (just as they're
omitted from the result of ``locals()``).
As the frame storage is always accessed directly, the proxy will automatically
pick up name binding operations that take place as the function executes. The
cache dictionary is implicitly updated when individual variables are read
from the frame state (including for containment checks, which need to check if
the name is currently bound or unbound).
Similarly, ``__setitem__`` and ``__delitem__`` operations on the proxy will
directly affect the corresponding fast local or cell reference on the underlying
frame, ensuring that changes are immediately visible to the running Python code,
rather than needing to be written back to the runtime storage at some later time.
Such changes are also immediately written to the ``f_locals`` cache to reduce the
opportunities for the cache to get out of sync with the frame state.
Keys that are not defined as local or closure variables on the underlying frame
are still written to the ``f_locals`` cache on optimised frames. This allows
utilities like ``pdb`` (which writes ``__return__`` and ``__exception__``
values into the frame ``f_locals`` mapping) to continue working as they always
have. These additional keys that do not correspond to a local or closure
variable on the frame will be left alone by future cache sync operations.
Other ``Mapping`` and ``MutableMapping`` methods will behave as expected for a
mapping with these essential method semantics, with the exception that only
intrinsically ``O(n)`` operations (e.g. copying, rendering as a string) and
operations that operate on a single key (e.g. getting, setting, deleting, or
popping) will implicitly refresh the value cache. Other operations
(e.g. length checks, equality checks, iteration) may use the value cache without
first ensuring that it is up to date (as ensuring the cache is up to date is
itself an ``O(n)`` operation).
An additional benefit of storing only the variable value cache on the frame
(rather than storing an instance of the proxy type), is that it avoids
creating a reference cycle from the frame back to itself, so the frame will
only be kept alive if another object retains a reference to a proxy instance.
Changes to the stable C API/ABI
-------------------------------
Unlike Python code, extension module functions that call in to the Python C API
can be called from any kind of Python scope. This means it isn't obvious from
the context whether ``locals()`` will return a snapshot or not, as it depends
on the scope of the calling Python code, not the C code itself.
This means it is desirable to offer C APIs that give predictable, scope
independent, behaviour. However, it is also desirable to allow C code to
exactly mimic the behaviour of Python code at the same scope.
To enable mimicking the behaviour of Python code, the stable C ABI would gain
the following new functions::
PyObject * PyLocals_Get();
PyLocals_Kind PyLocals_GetKind();
``PyLocals_Get()`` is directly equivalent to the Python ``locals()`` builtin.
It returns a new reference to the local namespace mapping for the active
Python frame at module and class scope, and when using ``exec()`` or ``eval()``.
It returns a shallow copy of the active namespace at
function/coroutine/generator scope.
``PyLocals_GetKind()`` returns a value from the newly defined ``PyLocals_Kind``
enum, with the following options being available:
* ``PyLocals_DIRECT_REFERENCE``: ``PyLocals_Get()`` returns a direct reference
to the local namespace for the running frame.
* ``PyLocals_SHALLOW_COPY``: ``PyLocals_Get()`` returns a shallow copy of the
local namespace for the running frame.
* ``PyLocals_UNDEFINED``: an error occurred (e.g. no active Python thread
state). A Python exception will be set if this value is returned.
This query API allows extension module code to determine the potential impact
of mutating the mapping returned by ``PyLocals_Get()`` without needing access
to the details of the running frame object.
To allow extension module code to behave consistently regardless of the active
Python scope, the stable C ABI would gain the following new functions::
PyObject * PyLocals_GetCopy();
PyObject * PyLocals_GetView();
``PyLocals_GetCopy()`` returns a new dict instance populated from the current
locals namespace. Roughly equivalent to ``dict(locals())`` in Python code, but
avoids the double-copy in the case where ``locals()`` already returns a shallow
copy.
``PyLocals_GetView()`` returns a new read-only mapping proxy instance for the
current locals namespace. This view immediately reflects all local variable
changes, independently of whether the running frame is optimised or not.
However, some operations (e.g. length checking, iteration, mapping equality
comparisons) may be subject to frame cache consistency issues on optimised
frames (as noted above when describing the behaviour of the fast locals proxy).
The existing ``PyEval_GetLocals()`` API will retain its existing behaviour in
CPython (mutable locals at class and module scope, shared dynamic snapshot
otherwise). However, its documentation will be updated to note that the
conditions under which the shared dynamic snapshot get updated have changed.
The ``PyEval_GetLocals()`` documentation will also be updated to recommend
replacing usage of this API with whichever of the new APIs is most appropriate
for the use case:
* Use ``PyLocals_GetView()`` for read-only access to the current locals
namespace.
* Use ``PyLocals_GetCopy()`` for a regular mutable dict that contains a copy of
the current locals namespace, but has no ongoing connection to the active
frame.
* Use ``PyLocals_Get()`` to exactly match the semantics of the Python level
``locals()`` builtin.
* Query ``PyLocals_GetKind()`` explicitly to implement custom handling
(e.g. raising a meaningful exception) for scopes where ``PyLocals_Get()``
would return a shallow copy rather than granting read/write access to the
locals namespace.
* Use implementation specific APIs (e.g. ``PyObject_GetAttrString(frame, "f_locals")``)
if read/write access to the frame is required and ``PyLocals_GetKind()``
returns something other than ``PyLocals_DIRECT_REFERENCE``.
Changes to the public CPython C API
-----------------------------------
The existing ``PyEval_GetLocals()`` API returns a borrowed reference, which
means it cannot be updated to return the new shallow copies at function
scope. Instead, it will continue to return a borrowed reference to an internal
dynamic snapshot stored on the frame object. This shared mapping will behave
similarly to the existing shared mapping in Python 3.10 and earlier, but the exact
conditions under which it gets refreshed will be different. Specifically, it
will be updated only in the following circumstance:
* any call to ``PyEval_GetLocals()``, ``PyLocals_Get()``, ``PyLocals_GetCopy()``,
or the Python ``locals()`` builtin while the frame is running
* any call to ``PyFrame_GetLocals()``, ``PyFrame_GetLocalsCopy()``,
``_PyFrame_BorrowLocals()``, ``PyFrame_FastToLocals()``, or
``PyFrame_FastToLocalsWithError()`` for the frame
* retrieving the ``f_locals`` attribute from a Python level frame object
* any call to the ``sync_frame_cache()`` method on a fast locals proxy
referencing that frame
* any operation on a fast locals proxy object that requires the shared
mapping to be up to date on the underlying frame. In the initial reference
implementation, those operations are those that are intrinsically ``O(n)``
operations (``flp.copy()`` and rendering as a string), as well as those that
refresh the cache entries for individual keys.
Accessing the frame "view" APIs will *not* implicitly update the shared dynamic
snapshot, and the CPython trace hook handling will no longer implicitly update
it either.
(Note: even though ``PyEval_GetLocals()`` is part of the stable C API/ABI, the
specifics of when the namespace it returns gets refreshed are still an
interpreter implementation detail)
The additions to the public CPython C API are the frame level enhancements
needed to support the stable C API/ABI updates::
PyLocals_Kind PyFrame_GetLocalsKind(frame);
PyObject * PyFrame_GetLocals(frame);
PyObject * PyFrame_GetLocalsCopy(frame);
PyObject * PyFrame_GetLocalsView(frame);
PyObject * _PyFrame_BorrowLocals(frame);
``PyFrame_GetLocalsKind(frame)`` is the underlying API for
``PyLocals_GetKind()``.
``PyFrame_GetLocals(frame)`` is the underlying API for ``PyLocals_Get()``.
``PyFrame_GetLocalsCopy(frame)`` is the underlying API for
``PyLocals_GetCopy()``.
``PyFrame_GetLocalsView(frame)`` is the underlying API for ``PyLocals_GetView()``.
``_PyFrame_BorrowLocals(frame)`` is the underlying API for
``PyEval_GetLocals()``. The underscore prefix is intended to discourage use and
to indicate that code using it is unlikely to be portable across
implementations. However, it is documented and visible to the linker in order
to avoid having to access the internals of the frame struct from the
``PyEval_GetLocals()`` implementation.
The ``PyFrame_LocalsToFast()`` function will be changed to always emit
``RuntimeError``, explaining that it is no longer a supported operation, and
affected code should be updated to use
``PyObject_GetAttrString(frame, "f_locals")`` to obtain a read/write proxy
instead.
In addition to the above documented interfaces, the draft reference
implementation also exposes the following undocumented interfaces::
PyTypeObject _PyFastLocalsProxy_Type;
#define _PyFastLocalsProxy_CheckExact(self) \
(Py_TYPE(self) == &_PyFastLocalsProxy_Type)
This type is what the reference implementation actually returns from
``PyObject_GetAttrString(frame, "f_locals")`` for optimized frames (i.e.
when ``PyFrame_GetLocalsKind()`` returns ``PyLocals_SHALLOW_COPY``).
Reducing the runtime overhead of trace hooks
--------------------------------------------
As noted in [9]_, the implicit call to ``PyFrame_FastToLocals()`` in the
Python trace hook support isn't free, and could be rendered unnecessary if
the frame proxy read values directly from the frame instead of getting them
from the mapping.
As the new frame locals proxy type doesn't require separate data refresh steps,
this PEP incorporates Victor Stinner's proposal to no longer implicitly call
``PyFrame_FastToLocalsWithError()`` before calling trace hooks implemented in
Python.
Code using the new frame view APIs will have the dynamic locals snapshot
implicitly refreshed when accessing methods that need it, while code using the
``PyEval_GetLocals()`` API will implicitly refresh it when making that call.
The PEP necessarily also drops the implicit call to ``PyFrame_LocalsToFast()``
when returning from a trace hook, as that API now always raises an exception.
Design Discussion
=================
Changing ``locals()`` to return independent snapshots at function scope
-----------------------------------------------------------------------
The ``locals()`` builtin is a required part of the language, and in the
reference implementation it has historically returned a mutable mapping with
the following characteristics:
* each call to ``locals()`` returns the *same* mapping object
* for namespaces where ``locals()`` returns a reference to something other than
the actual local execution namespace, each call to ``locals()`` updates the
mapping object with the current state of the local variables and any referenced
nonlocal cells
* changes to the returned mapping *usually* aren't written back to the
local variable bindings or the nonlocal cell references, but write backs
can be triggered by doing one of the following:
* installing a Python level trace hook (write backs then happen whenever
the trace hook is called)
* running a function level wildcard import (requires bytecode injection in Py3)
* running an ``exec`` statement in the function's scope (Py2 only, since
``exec`` became an ordinary builtin in Python 3)
Originally this PEP proposed to retain the first two of these properties,
while changing the third in order to address the outright behaviour bugs that
it can cause.
In [7]_ Nathaniel Smith made a persuasive case that we could make the behaviour
of ``locals()`` at function scope substantially less confusing by retaining only
the second property and having each call to ``locals()`` at function scope
return an *independent* snapshot of the local variables and closure references
rather than updating an implicitly shared snapshot.
As this revised design also made the implementation markedly easier to follow,
the PEP was updated to propose this change in behaviour, rather than retaining
the historical shared snapshot.
Keeping ``locals()`` as a snapshot at function scope
----------------------------------------------------
As discussed in [7]_, it would theoretically be possible to change the semantics
of the ``locals()`` builtin to return the write-through proxy at function scope,
rather than switching it to return independent snapshots.
This PEP doesn't (and won't) propose this as it's a backwards incompatible
change in practice, even though code that relies on the current behaviour is
technically operating in an undefined area of the language specification.
Consider the following code snippet::
def example():
x = 1
locals()["x"] = 2
print(x)
Even with a trace hook installed, that function will consistently print ``1``
on the current reference interpreter implementation::
>>> example()
1
>>> import sys
>>> def basic_hook(*args):
... return basic_hook
...
>>> sys.settrace(basic_hook)
>>> example()
1
Similarly, ``locals()`` can be passed to the ``exec()`` and ``eval()`` builtins
at function scope (either explicitly or implicitly) without risking unexpected
rebinding of local variables or closure references.
Provoking the reference interpreter into incorrectly mutating the local variable
state requires a more complex setup where a nested function closes over a
variable being rebound in the outer function, and due to the use of either
threads, generators, or coroutines, it's possible for a trace function to start
running for the nested function before the rebinding operation in the outer
function, but finish running after the rebinding operation has taken place (in
which case the rebinding will be reverted, which is the bug reported in [1]_).
In addition to preserving the de facto semantics which have been in place since
PEP 227 introduced nested scopes in Python 2.1, the other benefit of restricting
the write-through proxy support to the implementation-defined frame object API
is that it means that only interpreter implementations which emulate the full
frame API need to offer the write-through capability at all, and that
JIT-compiled implementations only need to enable it when a frame introspection
API is invoked, or a trace hook is installed, not whenever ``locals()`` is
accessed at function scope.
Returning snapshots from ``locals()`` at function scope also means that static
analysis for function level code will be more reliable, as only access to the
frame machinery will allow rebinding of local and nonlocal variable
references in a way that is hidden from static analysis.
What happens with the default args for ``eval()`` and ``exec()``?
-----------------------------------------------------------------
These are formally defined as inheriting ``globals()`` and ``locals()`` from
the calling scope by default.
There isn't any need for the PEP to change these defaults, so it doesn't, and
``exec()`` and ``eval()`` will start running in a shallow copy of the local
namespace when that is what ``locals()`` returns.
This behaviour will have potential performance implications, especially
for functions with large numbers of local variables (e.g. if these functions
are called in a loop, calling ``globals()`` and ``locals()`` once before the
loop and then passing the namespace into the function explicitly will give the
same semantics and performance characteristics as the status quo, whereas
relying on the implicit default would create a new shallow copy of the local
namespace on each iteration).
(Note: the reference implementation draft PR has updated the ``locals()`` and
``vars()``, ``eval()``, and ``exec()`` builtins to use ``PyLocals_Get()``. The
``dir()`` builtin still uses ``PyEval_GetLocals()``, since it's only using it
to make a list from the keys).
Changing the frame API semantics in regular operation
-----------------------------------------------------
Earlier versions of this PEP proposed having the semantics of the frame
``f_locals`` attribute depend on whether or not a tracing hook was currently
installed - only providing the write-through proxy behaviour when a tracing hook
was active, and otherwise behaving the same as the historical ``locals()``
builtin.
That was adopted as the original design proposal for a couple of key reasons,
one pragmatic and one more philosophical:
* Object allocations and method wrappers aren't free, and tracing functions
aren't the only operations that access frame locals from outside the function.
Restricting the changes to tracing mode meant that the additional memory and
execution time overhead of these changes would be as close to zero in regular
operation as we can possibly make them.
* "Don't change what isn't broken": the current tracing mode problems are caused
by a requirement that's specific to tracing mode (support for external
rebinding of function local variable references), so it made sense to also
restrict any related fixes to tracing mode
However, actually attempting to implement and document that dynamic approach
highlighted the fact that it makes for a really subtle runtime state dependent
behaviour distinction in how ``frame.f_locals`` works, and creates several
new edge cases around how ``f_locals`` behaves as trace functions are added
and removed.
Accordingly, the design was switched to the current one, where
``frame.f_locals`` is always a write-through proxy, and ``locals()`` is always
a snapshot, which is both simpler to implement and easier to explain.
Regardless of how the CPython reference implementation chooses to handle this,
optimising compilers and interpreters also remain free to impose additional
restrictions on debuggers, such as making local variable mutation through frame
objects an opt-in behaviour that may disable some optimisations (just as the
emulation of CPython's frame API is already an opt-in flag in some Python
implementations).
Continuing to support storing additional data on optimised frames
-----------------------------------------------------------------
One of the draft iterations of this PEP proposed removing the ability to store
additional data on optimised frames by writing to ``frame.f_locals`` keys that
didn't correspond to local or closure variable names on the underlying frame.
While this idea offered some attractive simplification of the fast locals proxy
implementation, ``pdb`` stores ``__return__`` and ``__exception__`` values on
arbitrary frames, so the standard library test suite fails if that functionality
no longer works.
Accordingly, the ability to store arbitrary keys was retained, at the expense
of certain operations on proxy objects currently either being slower than desired
(as they need to update the dynamic snapshot in order to provide correct
behaviour), or else assuming that the cache is currently up to date (and hence
potentially giving an incorrect answer if the frame state has changed in a
way that doesn't automatically update the cache contents).
It is expected that the exact details of the interaction between the fast locals
proxy and the ``f_locals`` value cache on the underlying frame will evolve over
time as opportunities for improvement are identified.
Historical semantics at function scope
--------------------------------------
The current semantics of mutating ``locals()`` and ``frame.f_locals`` in CPython
are rather quirky due to historical implementation details:
* actual execution uses the fast locals array for local variable bindings and
cell references for nonlocal variables
* there's a ``PyFrame_FastToLocals`` operation that populates the frame's
``f_locals`` attribute based on the current state of the fast locals array
and any referenced cells. This exists for three reasons:
* allowing trace functions to read the state of local variables
* allowing traceback processors to read the state of local variables
* allowing ``locals()`` to read the state of local variables
* a direct reference to ``frame.f_locals`` is returned from ``locals()``, so if
you hand out multiple concurrent references, then all those references will be
to the exact same dictionary
* the two common calls to the reverse operation, ``PyFrame_LocalsToFast``, were
removed in the migration to Python 3: ``exec`` is no longer a statement (and
hence can no longer affect function local namespaces), and the compiler now
disallows the use of ``from module import *`` operations at function scope
* however, two obscure calling paths remain: ``PyFrame_LocalsToFast`` is called
as part of returning from a trace function (which allows debuggers to make
changes to the local variable state), and you can also still inject the
``IMPORT_STAR`` opcode when creating a function directly from a code object
rather than via the compiler
This proposal deliberately *doesn't* formalise these semantics as is, since they
only make sense in terms of the historical evolution of the language and the
reference implementation, rather than being deliberately designed.
Proposing several additions to the stable C API/ABI
---------------------------------------------------
Historically, the CPython C API (and subsequently, the stable ABI) has
exposed only a single API function related to the Python ``locals`` builtin:
``PyEval_GetLocals()``. However, as it returns a borrowed reference, it is
not possible to adapt that interface directly to supporting the new ``locals()``
semantics proposed in this PEP.
An earlier iteration of this PEP proposed a minimalist adaptation to the new
semantics: one C API function that behaved like the Python ``locals()`` builtin,
and another that behaved like the ``frame.f_locals`` descriptor (creating and
returning the write-through proxy if necessary).
The feedback [8]_ on that version of the C API was that it was too heavily based
on how the Python level semantics were implemented, and didn't account for the
behaviours that authors of C extensions were likely to *need*.
The broader API now being proposed came from grouping the potential reasons for
wanting to access the Python ``locals()`` namespace from an extension module
into the following cases:
* needing to exactly replicate the semantics of the Python level ``locals()``
operation. This is the ``PyLocals_Get()`` API.
* needing to behave differently depending on whether writes to the result of
``PyLocals_Get()`` will be visible to Python code or not. This is handled by
the ``PyLocals_GetKind()`` query API.
* always wanting a mutable namespace that has been pre-populated from the
current Python ``locals()`` namespace, but *not* wanting any changes to
be visible to Python code. This is the ``PyLocals_GetCopy()`` API.
* always wanting a read-only view of the current locals namespace, without
incurring the runtime overhead of making a full copy each time. This is the
``PyLocals_GetView()`` API.
Historically, these kinds of checks and operations would only have been
possible if a Python implementation emulated the full CPython frame API. With
the proposed API, extension modules can instead ask more clearly for the
semantics that they actually need, giving Python implementations more
flexibility in how they provide those capabilities.
Implementation
==============
The reference implementation update is in development as a draft pull
request on GitHub ([6]_).
Acknowledgements
================
Thanks to Nathaniel J. Smith for proposing the write-through proxy idea in
[1]_ and pointing out some critical design flaws in earlier iterations of the
PEP that attempted to avoid introducing such a proxy.
Thanks to Steve Dower and Petr Viktorin for asking that more attention be paid
to the developer experience of the proposed C API additions [8,13]_.
Thanks to Mark Shannon for pushing for further simplification of the C level
API and semantics, as well as significant clarification of the PEP text (and for
restarting discussion on the PEP in early 2021 after a further year of
inactivity) [10,11,12].
References
==========
.. [1] Broken local variable assignment given threads + trace hook + closure
(https://bugs.python.org/issue30744)
.. [2] Clarify the required behaviour of ``locals()``
(https://bugs.python.org/issue17960)
.. [3] Updating function local variables from pdb is unreliable
(https://bugs.python.org/issue9633)
.. [4] CPython's Python API for installing trace hooks
(https://docs.python.org/dev/library/sys.html#sys.settrace)
.. [5] CPython's C API for installing trace hooks
(https://docs.python.org/3/c-api/init.html#c.PyEval_SetTrace)
.. [6] PEP 558 reference implementation
(https://github.com/python/cpython/pull/3640/files)
.. [7] Nathaniel's review of possible function level semantics for locals()
(https://mail.python.org/pipermail/python-dev/2019-May/157738.html)
.. [8] Discussion of more intentionally designed C API enhancements
(https://discuss.python.org/t/pep-558-defined-semantics-for-locals/2936/3)
.. [9] Disable automatic update of frame locals during tracing
(https://bugs.python.org/issue42197)
.. [10] python-dev thread: Resurrecting PEP 558 (Defined semantics for locals())
(https://mail.python.org/archives/list/python-dev@python.org/thread/TUQOEWQSCQZPUDV2UFFKQ3C3I4WGFPAJ/)
.. [11] python-dev thread: Comments on PEP 558
(https://mail.python.org/archives/list/python-dev@python.org/thread/A3UN4DGBCOB45STE6AQBITJFW6UZE43O/)
.. [12] python-dev thread: More comments on PEP 558
(https://mail.python.org/archives/list/python-dev@python.org/thread/7TKPMD5LHCBXGFUIMKDAUZELRH6EX76S/)
.. [13] Petr Viktorin's suggestion to use an enum for ``PyLocals_Get``'s behaviour
(https://mail.python.org/archives/list/python-dev@python.org/message/BTQUBHIVE766RPIWLORC5ZYRCRC4CEBL/)
Copyright
=========
This document is placed in the public domain or under the
CC0-1.0-Universal license, whichever is more permissive.
..
Local Variables:
mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70
coding: utf-8
End: