python-peps/pep-0426.txt

1742 lines
60 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

PEP: 426
Title: Metadata for Python Software Packages 2.0
Version: $Revision$
Last-Modified: $Date$
Author: Daniel Holth <dholth@fastmail.fm>,
Donald Stufft <donald@stufft.io>,
Nick Coghlan <ncoghlan@gmail.com>
BDFL-Delegate: Nick Coghlan <ncoghlan@gmail.com>
Discussions-To: Distutils SIG
Status: Draft
Type: Standards Track
Content-Type: text/x-rst
Created: 30 Aug 2012
Post-History: 14 Nov 2012, 5 Feb 2013, 7 Feb 2013, 9 Feb 2013
Abstract
========
This PEP describes a mechanism for adding metadata to Python distributions.
It includes specifics of the field names, and their semantics and
usage.
This document specifies version 2.0 of the metadata format.
Version 1.0 is specified in PEP 241.
Version 1.1 is specified in PEP 314.
Version 1.2 is specified in PEP 345.
Version 2.0 of the metadata format adds fields designed to make
third-party packaging of Python Software easier and defines a formal
extension mechanism. It also adds support for optional features of
distributions and allows the description to be placed into a payload
section. Finally, this version addresses several issues with the
previous iteration of the standard version identification scheme.
Metadata files
==============
The syntax defined in this PEP is for use with Python distribution
metadata files. The file format is a simple UTF-8 encoded Key: value
format with case-insensitive keys and no maximum line length, optionally
followed by a blank line and a payload containing a description of the
distribution.
This format is parseable by the ``email`` module with an appropriate
``email.policy.Policy()`` (see `Appendix A`_). When ``metadata`` is a
Unicode string, ```email.parser.Parser().parsestr(metadata)`` is a
serviceable parser.
There are three standard locations for these metadata files:
* the ``PKG-INFO`` file included in the base directory of Python
source distribution archives (as created by the distutils ``sdist``
command)
* the ``{distribution}-{version}.dist-info/METADATA`` file in a ``wheel``
binary distribution archive (as described in PEP 425, or a later version
of that specification)
* the ``{distribution}-{version}.dist-info/METADATA`` files in a local
Python installation database (as described in PEP 376, or a later version
of that specification)
Other tools involved in Python distribution may also use this format.
Encoding
========
Metadata 2.0 files are UTF-8 with the restriction that keys must be
ASCII. Parser implementations should be aware that older versions of
the Metadata specification do not specify an encoding.
Metadata header fields
=======================
This section specifies the names and semantics of each of the
supported fields in the metadata header.
In a single Metadata 2.0 file, fields marked with "(optional)" may occur
0 or 1 times. Fields marked with "(multiple use)" may be specified
0, 1 or more times. Only "Metadata-Version", "Name", "Version", and
"Summary" must appear exactly once.
The fields may appear in any order within the header section of the file.
Metadata-Version
----------------
Version of the file format; "2.0" is the only legal value.
Automated tools consuming metadata should warn if ``Metadata-Version`` is
greater than the highest version they support, and must fail if
``Metadata-Version`` has a greater major version than the highest
version they support.
For broader compatibility, automated tools may choose to produce
distribution metadata using the lowest metadata version that includes
all of the needed fields.
Example::
Metadata-Version: 2.0
Name
----
The name of the distribution.
Example::
Name: BeagleVote
Version
-------
The distribution's public version identifier. Public versions are designed
for consumption by automated tools and are strictly ordered according
to a defined scheme. See `Version scheme`_ below.
Example::
Version: 1.0a2
Summary
-------
A one-line summary of what the distribution does.
Example::
Summary: A module for collecting votes from beagles.
Private-Version (optional)
--------------------------
An arbitrary private version label. Private version labels are intended
for internal use by a project, and cannot be used in version specifiers.
See `Compatibility with other version schemes`_ below.
Examples::
Private-Version: 1.0.0-alpha.1
Private-Version: 1.3.7+build.11.e0f985a
Private-Version: v1.8.1.301.ga0df26f
Private-Version: 2013.02.17.dev123
Description (optional, deprecated)
----------------------------------
Starting with Metadata 2.0, the recommended place for the description is in
the payload section of the document, after the last header. The description
does not need to be reformatted when it is included in the payload.
See `Describing the Distribution`_ for more information on the expected
contents of this field.
Since a line separator immediately followed by another line separator
indicates the end of the headers section, any line separators in a
``Description`` header field must be suffixed by whitespace to
indicate continuation.
It is an error to provide both a ``Description`` header and a metadata
payload.
Keywords (optional)
-------------------
A list of additional whitespace separated keywords to be used to assist
searching for the distribution in a larger catalog.
Example::
Keywords: dog puppy voting election
Home-page (optional)
--------------------
A string containing the URL for the distribution's home page.
Example::
Home-page: http://www.example.com/~cschultz/bvote/
Download-URL (optional)
-----------------------
A string containing the URL from which this version of the distribution
can be downloaded. (This means that the URL can't be something like
".../BeagleVote-latest.tgz", but instead must be ".../BeagleVote-0.45.tgz".)
Project-URL (multiple use)
--------------------------
A string containing a label and a browsable URL for the project, separated
by the last occurrence of comma and space ", ".
The label consists of any permitted header text, including commas.
Example::
Bug, Issue Tracker, http://bitbucket.org/tarek/distribute/issues/
Author (optional)
-----------------
A string containing the author's name at a minimum; additional
contact information may be provided.
Example::
Author: C. Schultz, Universal Features Syndicate,
Los Angeles, CA <cschultz@peanuts.example.com>
Author-email (optional)
-----------------------
A string containing the author's e-mail address. It contains a name
and e-mail address in the RFC 5322 recommended ``Address Specification``
format.
Example::
Author-email: "C. Schultz" <cschultz@example.com>
Maintainer (optional)
---------------------
A string containing the maintainer's name at a minimum; additional
contact information may be provided.
Note that this field is intended for use when a project is being
maintained by someone other than the original author: it should be
omitted if it is identical to ``Author``.
Example::
Maintainer: C. Schultz, Universal Features Syndicate,
Los Angeles, CA <cschultz@peanuts.example.com>
Maintainer-email (optional)
---------------------------
A string containing the maintainer's e-mail address. It has the same
format as ``Author-email``.
Note that this field is intended for use when a project is being
maintained by someone other than the original author: it should be
omitted if it is identical to ``Author-email``.
Example::
Maintainer-email: "C. Schultz" <cschultz@example.com>
License (optional)
------------------
Text indicating the license covering the distribution where the license
is not a selection from the "License" Trove classifiers. See
"Classifier" below. This field may also be used to specify a
particular version of a license which is named via the ``Classifier``
field, or to indicate a variation or exception to such a license.
Examples::
License: This software may only be obtained by sending the
author a postcard, and then the user promises not
to redistribute it.
License: GPL version 3, excluding DRM provisions
The full text of the license would normally be included in a separate
file.
Classifier (multiple use)
-------------------------
Each entry is a string giving a single classification value
for the distribution. Classifiers are described in PEP 301 [2].
`Environment markers`_ may be used with this field.
Examples::
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console (Text Based)
Provides-Dist (multiple use)
----------------------------
Each entry contains a string naming a requirement that is satisfied by
installing this distribution. These strings must be of the form
``Name`` or ``Name (Version)``, following the formats of the corresponding
field definitions.
A distribution may provide additional names, e.g. to indicate that
multiple projects have been merged into and replaced by a single
distribution or to indicate that this project is a substitute for another.
For instance, distribute (a fork of setuptools) can include a
``Provides-Dist: setuptools`` entry to prevent the conflicting
package from being downloaded and installed when distribute is already
installed. A distribution that has been merged with another might
``Provides-Dist`` the obsolete name(s) to satisfy any projects that
require the obsolete distribution's name.
A distribution may also provide a "virtual" project name, which does
not correspond to any separately-distributed project: such a name
might be used to indicate an abstract capability which could be supplied
by one of multiple projects. E.g., multiple projects might supply
RDBMS bindings for use by a given ORM: each project might declare
that it provides ``ExampleORM-somedb-bindings``, allowing other
projects to depend only on having at least one of them installed.
A version declaration may be supplied and must follow the rules described
in `Version scheme`_. The distribution's version identifier will be implied
if none is specified.
`Environment markers`_ may be used with this field.
Examples::
Provides-Dist: AnotherProject (3.4)
Provides-Dist: virtual_package
Provides-Extra (multiple use)
-----------------------------
A string containing the name of an optional feature or "extra" that may
only be available when additional dependencies have been installed. Must
be printable ASCII, not containing whitespace, comma (,), or square
brackets [].
See `Optional Features`_ for details on the use of this field.
Example::
Name: beaglevote
Provides-Extra: pdf
Requires-Dist: reportlab; extra == 'pdf'
Requires-Dist: nose; extra == 'test'
Requires-Dist: sphinx; extra == 'doc'
Obsoleted-By (optional)
-----------------------
Indicates that this project is no longer being developed. The named
project provides a substitute or replacement.
A version declaration may be supplied and must follow the rules described
in `Version specifiers`_.
Possible uses for this field include handling project name changes and
project mergers.
Examples::
Name: BadName
Obsoleted-By: AcceptableName
Name: SeparateProject
Obsoleted-By: MergedProject (>=4.0.0)
Requires-Dist (multiple use)
----------------------------
Each entry contains a string naming some other distutils
project required by this distribution.
The format of a requirement string is identical to that of a distribution
name (e.g., as found in the ``Name:`` field) optionally followed by a
version declaration within parentheses.
The distribution names should correspond to names as found on the `Python
Package Index`_; often the same as, but distinct from, the module names
as accessed with ``import x``.
`Environment markers`_ may be used with this field.
Version declarations must follow the rules described in
`Version specifiers`_
Distributions may also depend on optional features of other distributions.
See `Optional Features`_ for details.
Examples::
Requires-Dist: pkginfo
Requires-Dist: PasteDeploy
Requires-Dist: zope.interface (>3.5.0)
Dependencies mentioned in ``Requires-Dist`` may be installed exclusively
at run time and are not guaranteed to be available when creating or
installing a package. If a dependency is needed during distribution
creation or installation *and* at run time, it should be listed under
both ``Requires-Dist`` and ``Setup-Requires-Dist``.
Setup-Requires-Dist (multiple use)
----------------------------------
Like ``Requires-Dist``, but names dependencies needed in order to build,
package or install the distribution -- in distutils, a dependency imported
by ``setup.py`` itself. Commonly used to bring in extra compiler support
or a package needed to generate a manifest from version control.
Examples::
Setup-Requires-Dist: custom_setup_command
Dependencies mentioned in ``Setup-Requires-Dist`` may be installed
exclusively for setup and are not guaranteed to be available at run time.
If a dependency is needed during distribution creation or installation
*and* at run time, it should be listed under both ``Requires-Dist`` and
``Setup-Requires-Dist``.
Requires-Python (multiple use)
------------------------------
This field specifies the Python version(s) that the distribution is
guaranteed to be compatible with.
`Environment markers`_ may be used with this field.
Version declarations must be in the format specified in
`Version specifiers`_.
Examples::
Requires-Python: 3.2
Requires-Python: >3.1
Requires-Python: >=2.3.4
Requires-Python: >=2.5,<2.7
If specified multiple times, the Python version must satisfy all such
constraints to be considered compatible. This is most useful in combination
with appropriate `Environment markers`_.
For example, if a feature was initially introduced to Python as a
Unix-specific addition, and then Windows support was added in the
subsequent release, this could be indicated with the following pair
of entries::
Requires-Python: >= 3.1
Requires-Python: >= 3.2; sys.platform == 'win32'
Requires-External (multiple use)
--------------------------------
Each entry contains a string describing some dependency in the
system that the distribution is to be used. This field is intended to
serve as a hint to downstream project maintainers, and has no
semantics which are meaningful to the ``distutils`` distribution.
The format of a requirement string is a name of an external
dependency, optionally followed by a version declaration within
parentheses.
`Environment markers`_ may be used with this field.
Because they refer to non-Python software releases, version identifiers
for this field are **not** required to conform to the format
described in `Version scheme`_: they should correspond to the
version scheme used by the external dependency.
Notice that there is no particular rule on the strings to be used.
Examples::
Requires-External: C
Requires-External: libpng (>=1.5)
Platform (multiple use)
-----------------------
A Platform specification describing an operating system supported by
the distribution which is not listed in the "Operating System" Trove
classifiers. See `Classifier`__ above.
__ `Classifier (multiple use)`_
Examples::
Platform: ObscureUnix
Platform: RareDOS
Supported-Platform (multiple use)
---------------------------------
Binary distributions containing a metadata file will use the
Supported-Platform field in their metadata to specify the OS and
CPU for which the binary distribution was compiled. The semantics of
the Supported-Platform field are not specified in this PEP.
Example::
Supported-Platform: RedHat 7.2
Supported-Platform: i386-win32-2791
Extension (multiple use)
------------------------
An ASCII string, not containing whitespace or the ``/`` character, that
indicates the presence of extended metadata. The additional fields
defined by the extension are then prefixed with the name of the extension
and the ``/`` character.
For example::
Extension: Chili
Chili/Type: Poblano
Chili/Heat: Mild
To avoid name conflicts, it is recommended that distribution names be used
to identify metadata extensions. This practice will also make it easier to
find authoritative documentation for metadata extensions.
As the order of the metadata headers is not constrained, the
``Extension: Chili`` field may appear before or after the corresponding
extension fields ``Chili/Type:`` etc.
Values in extension fields must still respect the general formatting
requirements for metadata headers.
A bare ``Extension: Name`` entry with no corresponding extension fields is
permitted. It may, for example, indicate the expected presence of an
additional metadata file rather than the presence of extension fields.
An extension field with no corresponding ``Extension: Name`` entry is an
error.
Describing the distribution
===========================
The distribution metadata should include a longer description of the
distribution that may run to several paragraphs. Software that deals
with metadata should not assume any maximum size for the description.
The recommended location for the description is in the metadata payload,
separated from the header fields by at least one completely blank line
(that is, two successive line separators with no other characters
between them, not even whitespace).
Alternatively, the description may be provided in the `Description`__
metadata header field. Providing both a ``Description`` field and a
payload is an error.
__ `Description (optional, deprecated)`_
The distribution description can be written using reStructuredText
markup [1]_. For programs that work with the metadata, supporting
markup is optional; programs may also display the contents of the
field as plain text without any special formatting. This means that
authors should be conservative in the markup they use.
Version scheme
==============
Public version identifiers must comply with the following scheme::
N[.N]+[{a|b|c|rc}N][.postN][.devN]
Version identifiers which do not comply with this scheme are an error.
Version identifiers must not include leading or trailing whitespace.
Any given version will be a "release", "pre-release", "post-release" or
"developmental release" as defined in the following sections.
.. note::
Some hard to read version identifiers are permitted by this scheme
in order to better accommodate the wide range of versioning practices
across existing public and private Python projects.
Accordingly, some of the versioning practices which are technically
permitted by the PEP are strongly discouraged for new projects. Where
this is the case, the relevant details are noted in the following
sections.
Releases
--------
A release number is a version identifier that consists solely of one or
more non-negative integer values, separated by dots::
N[.N]+
Releases within a project must be numbered in a consistently increasing
fashion. Ordering considers the numeric value of each component
in turn, with "component does not exist" sorted ahead of all numeric
values.
Date based release numbers are explicitly excluded from compatibility with
this scheme, as they hinder automatic translation to other versioning
schemes, as well as preventing the adoption of semantic versioning without
changing the name of the project. Accordingly, a leading release component
greater than or equal to ``1980`` is an error.
While any number of additional components after the first are permitted
under this scheme, the most common variants are to use two components
("major.minor") or three components ("major.minor.micro").
For example::
0.9
0.9.1
0.9.2
...
0.9.10
0.9.11
1.0
1.0.1
1.1
2.0
2.0.1
A release series is any set of release numbers that start with a common
prefix. For example, ``3.3.1``, ``3.3.5`` and ``3.3.9.45`` are all
part of the ``3.3`` release series.
.. note::
Using both ``X.Y`` and ``X.Y.0`` as distinct release numbers within the
scope of a single release series is strongly discouraged, as it makes the
version ordering ambiguous for human readers. Automated tools should
either treat this case as an error, or else interpret an ``X.Y.0``
release as coming *after* the corresponding ``X.Y`` release.
The recommended practice is to always use release numbers of a consistent
length (that is, always include the trailing ``.0``). An acceptable
alternative is to consistently omit the trailing ``.0``. The example
above shows both styles, always including the ``.0`` at the second
level and consistently omitting it at the third level.
Pre-releases
------------
Some projects use an "alpha, beta, release candidate" pre-release cycle to
support testing by their users prior to a full release.
If used as part of a project's development cycle, these pre-releases are
indicated by a suffix appended directly to the last component of the
release number::
X.YaN # Alpha release
X.YbN # Beta release
X.YcN # Release candidate (alternative notation: X.YrcN)
X.Y # Full release
The pre-release suffix consists of an alphabetical identifier for the
pre-release phase, along with a non-negative integer value. Pre-releases for
a given release are ordered first by phase (alpha, beta, release candidate)
and then by the numerical component within that phase.
.. note::
Using both ``c`` and ``rc`` to identify release candidates within
the scope of a single release is strongly discouraged, as it makes the
version ordering ambiguous for human readers. Automated tools should
either treat this case as an error, or else interpret all ``rc`` versions
as coming after all ``c`` versions (that is, ``rc1`` indicates a later
version than ``c2``).
Post-releases
-------------
Some projects use post-releases to address minor errors in a release that
do not affect the distributed software (for example, correcting an error
in the release notes).
If used as part of a project's development cycle, these post-releases are
indicated by a suffix appended directly to the last component of the
release number::
X.Y.postN # Post-release
The post-release suffix consists of the string ``.post``, followed by a
non-negative integer value. Post-releases are ordered by their
numerical component, immediately following the corresponding release,
and ahead of any subsequent release.
.. note::
The use of post-releases to publish maintenance releases containing
actual bug fixes is strongly discouraged. In general, it is better
to use a longer release number and increment the final component
for each maintenance release.
Post-releases are also permitted for pre-releases::
X.YaN.postM # Post-release of an alpha release
X.YbN.postM # Post-release of a beta release
X.YcN.postM # Post-release of a release candidate
.. note::
Creating post-releases of pre-releases is strongly discouraged, as
it makes the version identifier difficult to parse for human readers.
In general, it is substantially clearer to simply create a new
pre-release by incrementing the numeric component.
Developmental releases
----------------------
Some projects make regular developmental releases, and system packagers
(especially for Linux distributions) may wish to create early releases
which do not conflict with later project releases.
If used as part of a project's development cycle, these developmental
releases are indicated by a suffix appended directly to the last
component of the release number::
X.Y.devN # Developmental release
The developmental release suffix consists of the string ``.dev``,
followed by a non-negative integer value. Developmental releases are ordered
by their numerical component, immediately before the corresponding release
(and before any pre-releases), and following any previous release.
Developmental releases are also permitted for pre-releases and
post-releases::
X.YaN.devM # Developmental release of an alpha release
X.YbN.devM # Developmental release of a beta release
X.YcN.devM # Developmental release of a release candidate
X.Y.postN.devM # Developmental release of a post-release
.. note::
Creating developmental releases of pre-releases is strongly
discouraged, as it makes the version identifier difficult to parse for
human readers. In general, it is substantially clearer to simply create
additional pre-releases by incrementing the numeric component.
Developmental releases of post-releases are also strongly discouraged,
but they may be appropriate for projects which use the post-release
notation for full maintenance releases which may include code changes.
Examples of compliant version schemes
-------------------------------------
The standard version scheme is designed to encompass a wide range of
identification practices across public and private Python projects. In
practice, a single project attempting to use the full flexibility offered
by the scheme would create a situation where human users had difficulty
figuring out the relative order of versions, even though the rules above
ensure all compliant tools will order them consistently.
The following examples illustrate a small selection of the different
approaches projects may choose to identify their releases, while still
ensuring that the "latest release" and the "latest stable release" can
be easily determined, both by human users and automated tools.
Simple "major.minor" versioning::
0.1
0.2
0.3
1.0
1.1
...
Simple "major.minor.micro" versioning::
1.1.0
1.1.1
1.1.2
1.2.0
...
"major.minor" versioning with alpha, beta and release candidate
pre-releases::
0.9
1.0a1
1.0a2
1.0b1
1.0c1
1.0
1.1a1
...
"major.minor" versioning with developmental releases, release candidates
and post-releases for minor corrections::
0.9
1.0.dev1
1.0.dev2
1.0.dev3
1.0.dev4
1.0rc1
1.0rc2
1.0
1.0.post1
1.1.dev1
...
Summary of permitted suffixes and relative ordering
---------------------------------------------------
.. note::
This section is intended primarily for authors of tools that
automatically process distribution metadata, rather than authors
of Python distributions deciding on a versioning scheme.
The numeric release component of version identifiers should be sorted in
the same order as Python's tuple sorting when the release number is
parsed as follows::
tuple(map(int, release_number.split(".")))
Within a numeric release (``1.0``, ``2.7.3``), the following suffixes
are permitted and are ordered as shown::
.devN, aN, bN, cN, rcN, <no suffix>, .postN
Note that `rc` will always sort after `c` (regardless of the numeric
component) although they are semantically equivalent. Tools are free to
reject this case as ambiguous and remain in compliance with the PEP.
Within an alpha (``1.0a1``), beta (``1.0b1``), or release candidate
(``1.0c1``, ``1.0rc1``), the following suffixes are permitted and are
ordered as shown::
.devN, <no suffix>, .postN
Within a post-release (``1.0.post1``), the following suffixes are permitted
and are ordered as shown::
.devN, <no suffix>
Note that ``devN`` and ``postN`` must always be preceded by a dot, even
when used immediately following a numeric version (e.g. ``1.0.dev456``,
``1.0.post1``).
Within a given suffix, ordering is by the value of the numeric component.
The following example covers many of the possible combinations::
1.0.dev456
1.0a1
1.0a2.dev456
1.0a12.dev456
1.0a12
1.0b1.dev456
1.0b2
1.0b2.post345.dev456
1.0b2.post345
1.0c1.dev456
1.0c1
1.0
1.0.post456.dev34
1.0.post456
1.1.dev1
Version ordering across different metadata versions
---------------------------------------------------
Metadata v1.0 (PEP 241) and metadata v1.1 (PEP 314) do not
specify a standard version identification or ordering scheme. This PEP does
not mandate any particular approach to handling such versions, but
acknowledges that the de facto standard for ordering them is
the scheme used by the ``pkg_resources`` component of ``setuptools``.
Software that automatically processes distribution metadata should attempt
to normalize non-compliant version identifiers to the standard scheme, and
ignore them if normalization fails. As any normalization scheme will be
implementation specific, this means that projects using non-compliant
version identifiers may not be handled consistently across different
tools, even when correctly publishing the earlier metadata versions.
For distributions currently using non-compliant version identifiers, these
filtering guidelines mean that it should be enough for the project to
simply switch to the use of compliant version identifiers to ensure
consistent handling by automated tools.
Distribution users may wish to explicitly remove non-compliant versions from
any private package indexes they control.
For metadata v1.2 (PEP 345), the version ordering described in this PEP
should be used in preference to the one defined in PEP 386.
Compatibility with other version schemes
----------------------------------------
Some projects may choose to use a version scheme which requires
translation in order to comply with the public version scheme defined in
this PEP. In such cases, the `Private-Version`__ field can be used to
record the project specific version as an arbitrary label, while the
translated public version is given in the `Version`_ field.
__ `Private-Version (optional)`_
This allows automated distribution tools to provide consistently correct
ordering of published releases, while still allowing developers to use
the internal versioning scheme they prefer for their projects.
Semantic versioning
~~~~~~~~~~~~~~~~~~~
`Semantic versioning`_ is a popular version identification scheme that is
more prescriptive than this PEP regarding the significance of different
elements of a release number. Even if a project chooses not to abide by
the details of semantic versioning, the scheme is worth understanding as
it covers many of the issues that can arise when depending on other
distributions, and when publishing a distribution that others rely on.
The "Major.Minor.Patch" (described in this PEP as "major.minor.micro")
aspects of semantic versioning (clauses 1-9 in the 2.0.0-rc-1 specification)
are fully compatible with the version scheme defined in this PEP, and abiding
by these aspects is encouraged.
Semantic versions containing a hyphen (pre-releases - clause 10) or a
plus sign (builds - clause 11) are *not* compatible with this PEP
and are not permitted in the public `Version`_ field.
One possible mechanism to translate such private semantic versions to
compatible public versions is to use the ``.devN`` suffix to specify the
appropriate version order.
.. _Semantic versioning: http://semver.org/
DVCS based version labels
~~~~~~~~~~~~~~~~~~~~~~~~~
Many build tools integrate with distributed version control systems like
Git and Mercurial in order to add an identifying hash to the version
identifier. As hashes cannot be ordered reliably such versions are not
permitted in the public `Version`_ field.
As with semantic versioning, the public ``.devN`` suffix may be used to
uniquely identify such releases for publication, while the private
version field is used to record the original version label.
Date based versions
~~~~~~~~~~~~~~~~~~~
As with other incompatible version schemes, date based versions can be
stored in the ``Private-Version`` field. Translating them to a compliant
public version is straightforward: the simplest approach is to subtract
the year before the first release from the major component in the release
number.
Version specifiers
==================
A version specifier consists of a series of version clauses, separated by
commas. Each version clause consists of an optional comparison operator
followed by a version identifier. For example::
0.9, >= 1.0, != 1.3.4, < 2.0
Each version identifier must be in the standard format described in
`Version scheme`_.
The comma (",") is equivalent to a logical **and** operator.
Whitespace between a conditional operator and the following version
identifier is optional, as is the whitespace around the commas.
Compatible release
------------------
A compatible release clause omits the comparison operator and matches any
version that is expected to be compatible with the specified version.
For a given release identifier ``V.N``, the compatible release clause is
approximately equivalent to the pair of comparison clauses::
>= V.N, < V+1.dev0
where ``V+1`` is the next version after ``V``, as determined by
incrementing the last numeric component in ``V``. For example,
the following version clauses are approximately equivalent::
2.2
>= 2.2, < 3.dev0
1.4.5
>= 1.4.5, < 1.5.dev0
The difference between the two is that using a compatible release clause
does *not* count as `explicitly mentioning a pre-release`__.
__ `Handling of pre-releases`_
If a pre-release, post-release or developmental release is named in a
compatible release clause as ``V.N.suffix``, then the suffix is ignored
when determining the upper limit of compatibility::
2.2.post3
>= 2.2.post3, < 3.dev0
1.4.5a4
>= 1.4.5a4, < 1.5.dev0
Version comparisons
-------------------
A version comparison clause includes a comparison operator and a version
identifier, and will match any version where the comparison is true.
Comparison clauses are only needed to cover cases which cannot be handled
with an appropriate compatible release clause, including coping with
dependencies which do not have a robust backwards compatibility policy
and thus break the assumptions of a compatible release clause.
The defined comparison operators are ``<``, ``>``, ``<=``, ``>=``, ``==``,
and ``!=``.
The ordered comparison operators ``<``, ``>``, ``<=``, ``>=`` are based
on the consistent ordering defined by the standard `Version scheme`_.
The ``==`` and ``!=`` operators are based on string comparisons - in order
to match, the version being checked must start with exactly that sequence of
characters.
.. note::
The use of ``==`` when defining dependencies for published distributions
is strongly discouraged, as it greatly complicates the deployment of
security fixes (the strict version comparison operator is intended
primarily for use when defining dependencies for particular
applications while using a shared distribution index).
Handling of pre-releases
------------------------
Pre-releases of any kind, including developmental releases, are implicitly
excluded from all version specifiers, *unless* a pre-release or developmental
release is explicitly mentioned in one of the clauses. For example, these
specifiers implicitly exclude all pre-releases and development
releases of later versions::
2.2
>= 1.0
While these specifiers would include at least some of them::
2.2.dev0
2.2, != 2.3b2
>= 1.0a1
>= 1.0c1
>= 1.0, != 1.0b2
>= 1.0, < 2.0.dev123
Dependency resolution tools should use the above rules by default, but
should also allow users to request the following alternative behaviours:
* accept already installed pre-releases for all version specifiers
* retrieve and install available pre-releases for all version specifiers
Dependency resolution tools may also allow the above behaviour to be
controlled on a per-distribution basis.
Post-releases and purely numeric releases receive no special treatment -
they are always included unless explicitly excluded.
Examples
--------
* ``Requires-Dist: zope.interface (3.1)``: version 3.1 or later, but not
version 4.0 or later. Excludes pre-releases and developmental releases.
* ``Requires-Dist: zope.interface (3.1.0)``: version 3.1.0 or later, but not
version 3.2.0 or later. Excludes pre-releases and developmental releases.
* ``Requires-Dist: zope.interface (==3.1)``: any version that starts
with 3.1, excluding pre-releases and developmental releases.
* ``Requires-Dist: zope.interface (3.1.0,!=3.1.3)``: version 3.1.0 or later,
but not version 3.1.3 and not version 3.2.0 or later. Excludes pre-releases
and developmental releases. For this particular project, this means: "any
version of the 3.1 series but not 3.1.3". This is equivalent to:
``>=3.1, !=3.1.3, <3.2``.
* ``Requires-Python: 2.6``: Any version of Python 2.6 or 2.7. It
automatically excludes Python 3 or later.
* ``Requires-Python: 3.2, < 3.3``: Specifically requires Python 3.2,
excluding pre-releases.
* ``Requires-Python: 3.3a1``: Any version of Python 3.3+, including
pre-releases like 3.4a1.
Depending on distributions that use non-compliant version schemes
-----------------------------------------------------------------
A distribution using this version of the metadata standard may need to depend
on another distribution using an earlier version of the metadata standard
and a non-compliant versioning scheme.
The normal ``Requires-Dist`` and ``Setup-Requires-Dist`` fields can be used
for such dependencies, so long as the dependency itself can be expressed
using a compliant version specifier.
For more exotic dependencies, a metadata extension would be needed in order
to express the dependencies accurately while still obeying the restrictions
on standard version specifiers. The ``Requires-External`` field may also
be used, but would not be as amenable to automatic processing.
Environment markers
===================
An **environment marker** is a marker that can be added at the end of a
field after a semi-colon (";"), to add a condition about the execution
environment.
Here are some example of fields using such markers::
Requires-Dist: pywin32 (>1.0); sys.platform == 'win32'
Requires-Dist: foo (1,!=1.3); platform.machine == 'i386'
Requires-Dist: bar; python_version == '2.4' or python_version == '2.5'
Requires-External: libxslt; 'linux' in sys.platform
The micro-language behind this is a simple subset of Python: it compares
only strings, with the ``==`` and ``in`` operators (and their opposites),
and with the ability to combine expressions. Parentheses are supported
for grouping.
The pseudo-grammar is ::
MARKER: EXPR [(and|or) EXPR]*
EXPR: ("(" MARKER ")") | (SUBEXPR [(in|==|!=|not in) SUBEXPR])
where ``SUBEXPR`` belongs to any of the following (the details after the
colon in each entry define the value represented by that subexpression):
* ``python_version``: '%s.%s' % (sys.version_info[0], sys.version_info[1])
* ``python_full_version``: sys.version.split()[0]
* ``os.name````: os.name
* ``sys.platform````: sys.platform
* ``platform.version``: platform.version()
* ``platform.machine``: platform.machine()
* ``platform.python_implementation``: = platform.python_implementation()
* ``extra``: (name of requested feature) or None
* ``'text'``: a free string, like ``'2.4'``, or ``'win32'``
Notice that ``in`` and ``not in`` are restricted to strings, meaning that it
is not possible to use other sequences like tuples or lists on the right
side.
The fields that benefit from this marker are:
* ``Requires-Python``
* ``Requires-External``
* ``Requires-Dist``
* ``Provides-Dist``
* ``Classifier``
Optional features
=================
Distributions may use the ``Provides-Extra`` field to declare additional
features that they provide. Environment markers may then be used to indicate
that particular dependencies are needed only when a particular optional
feature has been requested.
Other distributions then require an optional feature by placing it
inside square brackets after the distribution name when declaring the
dependency. Multiple features can be requisted by separating them with a
comma within the brackets.
The full set of dependency requirements is then the union of the sets
created by first evaluating the `Requires-Dist` fields with `extra`
set to `None` and then to the name of each requested feature.
Example::
Requires-Dist: beaglevote[pdf]
-> requires beaglevote, reportlab at run time
Setup-Requires-Dist: beaglevote[test, doc]
-> requires beaglevote, sphinx, nose at setup time
It is legal to specify `Provides-Extra` without referencing it in any
`Requires-Dist`. It is an error to request a feature name that has
not been declared with `Provides-Extra`.
The following feature names are implicitly defined for all distributions:
- `test`: dependencies that are needed in order to run automated tests
- `doc`: dependencies that are needed in order to generate documentation
Listing these implicit features explicitly in a ``Provides-Extra`` field is
permitted, but not required.
Updating the metadata specification
===================================
The metadata specification may be updated with clarifications without
requiring a new PEP or a change to the metadata version.
Adding new features (other than through the extension mechanism), or
changing the meaning of existing fields, requires a new metadata version
defined in a new PEP.
Summary of differences from \PEP 345
====================================
* Metadata-Version is now 2.0, with semantics specified for handling
version changes
* Most fields are now optional
* Explicit permission for in-place clarifications without releasing a new
version of the specification
* General reformatting of the PEP to make it easier to read
* Values are now expected to be UTF-8
* Changed the version scheme
* added the new ``Private-Version`` field
* changed the top level sort position of the ``.devN`` suffix
* allowed single value version numbers
* explicit exclusion of leading or trailing whitespace
* explicit criterion for the exclusion of date based versions
* incorporated the version scheme directly into the PEP
* Changed interpretation of version specifiers
* implicitly exclude pre-releases unless explicitly requested
* treat post releases the same way as unqualified releases
* Discuss ordering and dependencies across metadata versions
* Clarify use of parentheses for grouping in environment marker
pseudo-grammar
* Support for packaging, build and installation dependencies
* the new ``Setup-Requires-Dist`` field
* Optional feature mechanism
* the new ``Provides-Extra`` field
* ``extra`` expression defined for environment markers
* optional feature support in ``Requires-Dist``
* Metadata extension mechanism
* the new ``Extension`` field and extension specific fields
* Updated obsolescence mechanism
* the new ``Obsoleted-By`` field
* the ``Obsoletes-Dist`` field has been removed
* Simpler description format
* the ``Description`` field is now deprecated
* A payload (containing the description) may appear after the headers.
* Other changed fields:
- ``Requires-Python`` (explicitly flagged as multiple use)
- ``Project-URL`` (commas permitted in labels)
* Clarified fields:
- ``Provides-Dist``
- ``Keywords``
The rationale for major changes is given in the following sections.
Metadata-Version semantics
--------------------------
The semantics of major and minor version increments are now specified,
and follow the same model as the format version semantics specified for
the wheel format in PEP 427: minor version increments must behave
reasonably when processed by a tool that only understand earlier metadata
versions with the same major version, while major version increments
may include changes that are not compatible with existing tools.
The major version number of the specification has been incremented
accordingly, as interpreting PEP 426 metadata in accordance with earlier
metadata specifications is unlikely to give the expected behaviour.
Whenever the major version number of the specification is incremented, it
is expected that deployment will take some time, as either metadata
consuming tools must be updated before other tools can safely start
producing the new format, or else the sdist and wheel formats, along with
the installation database definition, will need to be updated to support
provision of multiple versions of the metadata in parallel.
Existing tools won't abide by this guideline until they're updated to
support the new metadata standard, so the new semantics will first take
effect for a hypothetical 2.x -> 3.0 transition. For the 1.x -> 2.0
transition, it is recommended that tools continue to produce the
existing supplementary files (such as ``entry_points.txt``) in addition
to any equivalents specified using the new features of the standard
metadata format (including the formal extension mechanism).
Standard encoding and other format clarifications
-------------------------------------------------
Several aspects of the file format, including the expected file encoding,
were underspecified in previous versions of the metadata standard. To
make it easier to develop interoperable tools, these details are now
explicitly specified.
Changing the version scheme
---------------------------
The new ``Private-Version`` field is intended to make it clearer that the
constraints on public version identifiers are there primarily to aid in
the creation of reliable automated dependency analysis tools. Projects
are free to use whatever versioning scheme they like internally, so long
as they are able to translate it to something the dependency analysis tools
will understand.
The key change in the version scheme in this PEP relative to that in
PEP 386 is to sort top level developmental releases like ``X.Y.devN`` ahead
of alpha releases like ``X.Ya1``. This is a far more logical sort order, as
projects already using both development releases and alphas/betas/release
candidates do not want their developmental releases sorted in
between their release candidates and their full releases. There is no
rationale for using ``dev`` releases in that position rather than
merely creating additional release candidates.
The updated sort order also means the sorting of ``dev`` versions is now
consistent between the metadata standard and the pre-existing behaviour
of ``pkg_resources`` (and hence the behaviour of current installation
tools).
Making this change should make it easier for affected existing projects to
migrate to the latest version of the metadata standard.
Another change to the version scheme is to allow single number
versions, similar to those used by non-Python projects like Mozilla
Firefox, Google Chrome and the Fedora Linux distribution. This is actually
expected to be more useful for version specifiers (allowing things like
the simple ``Requires-Python: 3`` rather than the more convoluted
``Requires-Python: >= 3.0, < 4``), but it is easier to allow it for both
version specifiers and release numbers, rather than splitting the
two definitions.
The exclusion of leading and trailing whitespace was made explicit after
a couple of projects with version identifiers differing only in a
trailing ``\n`` character were found on PyPI.
The exclusion of major release numbers that looks like dates was implied
by the overall text of PEP 386, but not clear in the definition of the
version scheme. This exclusion has been made clear in the definition of
the release component.
Finally, as the version scheme in use is dependent on the metadata
version, it was deemed simpler to merge the scheme definition directly into
this PEP rather than continuing to maintain it as a separate PEP.
`Appendix B` shows detailed results of an analysis of PyPI distribution
version information, as collected on 19th February, 2013. This analysis
compares the behaviour of the explicitly ordered version schemes defined in
this PEP and PEP 386 with the de facto standard defined by the behaviour
of setuptools. These metrics are useful, as the intent of both PEPs is to
follow existing setuptools behaviour as closely as is feasible, while
still throwing exceptions for unorderable versions (rather than trying
to guess an appropriate order as setuptools does).
Overall, the percentage of compatible distributions improves from 97.7%
with PEP 386 to 98.7% with this PEP. While the number of projects affected
in practice was small, some of the affected projects are in widespread use
(such as Pinax and selenium). The surprising ordering discrepancy also
concerned developers and acted as an unnecessary barrier to adoption of
the new metadata standard.
The data also shows that the pre-release sorting discrepancies are seen
only when analysing *all* versions from PyPI, rather than when analysing
public versions. This is largely due to the fact that PyPI normally reports
only the most recent version for each project (unless maintainers
explicitly configure their project to display additional versions). However,
installers that need to satisfy detailed version constraints often need
to look at all available versions, as they may need to retrieve an older
release.
Even this PEP doesn't completely eliminate the sorting differences relative
to setuptools:
* Sorts differently (after translations): 38 / 28194 (0.13 %)
* Sorts differently (no translations): 2 / 28194 (0.01 %)
The two remaining sort order discrepancies picked up by the analysis are due
to a pair of projects which have PyPI releases ending with a carriage
return, alongside releases with the same version number, only *without* the
trailing carriage return.
The sorting discrepancies after translation relate mainly to differences
in the handling of pre-releases where the standard mechanism is considered
to be an improvement. For example, the existing pkg_resources scheme will
sort "1.1beta1" *after* "1.1b2", whereas the suggested standard translation
for "1.1beta1" is "1.1b1", which sorts *before* "1.1b2". Similarly, the
pkg_resources scheme will sort "-dev-N" pre-releases differently from
"devN" pre-releases when they occur within the same release, while the
standard scheme will normalize both representations to ".devN" and sort
them by the numeric component.
A more opinionated description of the versioning scheme
-------------------------------------------------------
As in PEP 386, the primary focus is on codifying existing practices to make
them more amenable to automation, rather than demanding that existing
projects make non-trivial changes to their workflow. However, the
standard scheme allows significantly more flexibility than is needed
for the vast majority of simple Python packages (which often don't even
need maintenance releases - many users are happy with needing to upgrade to a
new feature release to get bug fixes).
For the benefit of novice developers, and for experienced developers
wishing to better understand the various use cases, the specification
now goes into much greater detail on the components of the defined
version scheme, including examples of how each component may be used
in practice.
The PEP also explicitly guides developers in the direction of
semantic versioning (without requiring it), and discourages the use of
several aspects of the full versioning scheme that have largely been
included in order to cover esoteric corner cases in the practices of
existing projects and in repackaging software for Linux distributions.
Changing the interpretation of version specifiers
-------------------------------------------------
The previous interpretation of version specifiers made it very easy to
accidentally download a pre-release version of a dependency. This in
turn made it difficult for developers to publish pre-release versions
of software to the Python Package Index, as even marking the package as
hidden wasn't enough to keep automated tools from downloading it, and also
made it harder for users to obtain the test release manually through the
main PyPI web interface.
The previous interpretation also excluded post-releases from some version
specifiers for no adequately justified reason.
The updated interpretation is intended to make it difficult to accidentally
accept a pre-release version as satisfying a dependency, while allowing
pre-release versions to be explicitly requested when needed.
The "some forward compatibility assumed" default version constraint is
taken directly from the Ruby community's "pessimistic version constraint"
operator [4]_ to allow projects to take a cautious approach to forward
compatibility promises, while still easily setting a minimum required
version for their dependencies. It is made the default behaviour rather
than needing a separate operator in order to explicitly discourage
overspecification of dependencies by library developers. The explicit
comparison operators remain available to cope with dependencies with
unreliable or non-existent backwards compatibility policies.
Packaging, build and installation dependencies
----------------------------------------------
The new ``Setup-Requires-Dist`` field allows a distribution to indicate when
a dependency is needed to package, build or install the distribution, rather
than being needed to run the software after installation.
This should allow distribution tools to effectively support a wider range of
distribution requirements.
Support for optional features of distributions
----------------------------------------------
The new ``Provides-Extra`` field allows distributions to declare optional
features, and to use environment markers to reduce their dependencies
when those features are not requested. Environment markers may also be
used to require a later version of Python when particular features are
requested.
The ``Requires-Dist`` and ``Setup-Requires-Dist`` fields then allow
distributions to require optional features of other distributions.
The ``test`` and ``doc`` features are implicitly defined for all
distributions, as one key motivation for this feature is to encourage
distributions to explicitly declare the dependencies needed to run
their automatic tests, or build their documentation, without demanding those
dependencies be present in order to merely install or use the software.
Support for metadata extensions
-------------------------------
The new ``Extension`` field effectively allows sections of the metadata
namespace to be delegated to other distributions, while preserving a
standard overal format metadata format for easy of processing by
distribution tools that do not support a particular extension.
It also works well in combination with the new ``Setup-Requires-Dist`` field
to allow a distribution to depend on tools which *do* know how to handle
the chosen extension, and the new optional features mechanism, allowing
support for particular extensions to be provided as optional features.
Updated obsolescence mechanism
------------------------------
The marker to indicate when a project is obsolete and should be replaced
has been moved to the obsolete project (the new ``Obsoleted-By`` field),
replacing the previous marker on the replacement project (the removed
``Obsoletes-Dist`` field).
This should allow distribution tools to more easily warn users of
obsolete projects and their suggested replacements.
The ``Obsoletes-Dist`` header is removed rather than deprecated as it
is not widely supported, and so removing it does not present any significant
barrier to tools and projects adopting the new metadata format.
Simpler description format
--------------------------
Distribution descriptions are often quite long, sometimes including a
short guide to using the module. Moving them into the file payload allows
them to be formatted neatly as reStructuredText without needing to
carefully avoid the introduction of a blank line that would terminate
the header section.
The ``Description`` header is deprecated rather than removed to support
easier conversion of existing tools and projects to the new metadata
format.
References
==========
This document specifies version 2.0 of the metadata format.
Version 1.0 is specified in PEP 241.
Version 1.1 is specified in PEP 314.
Version 1.2 is specified in PEP 345.
The initial attempt at a standardised version scheme, along with the
justifications for needing such a standard can be found in PEP 386.
.. [1] reStructuredText markup:
http://docutils.sourceforge.net/
.. _`Python Package Index`: http://pypi.python.org/pypi/
.. [2] PEP 301:
http://www.python.org/dev/peps/pep-0301/
.. [3] Version compatibility analysis script:
http://hg.python.org/peps/file/default/pep-0426/pepsort.py
.. [4] Pessimistic version constraint
http://docs.rubygems.org/read/chapter/16
Appendix A
==========
The script used for this analysis is available at [3]_.
Parsing and generating the Metadata 2.0 serialization format using
Python 3.3::
# Metadata 2.0 demo
from email.generator import Generator
from email import header
from email.parser import Parser
from email.policy import Compat32
from email.utils import _has_surrogates
class MetadataPolicy(Compat32):
max_line_length = 0
continuation_whitespace = '\t'
def _sanitize_header(self, name, value):
if not isinstance(value, str):
return value
if _has_surrogates(value):
raise NotImplementedError()
else:
return value
def _fold(self, name, value, sanitize):
body = ((self.linesep+self.continuation_whitespace)
.join(value.splitlines()))
return ''.join((name, ': ', body, self.linesep))
if __name__ == "__main__":
import sys
import textwrap
pkg_info = """\
Metadata-Version: 2.0
Name: package
Version: 0.1.0
Summary: A package.
Description: Description
===========
A description of the package.
"""
m = Parser(policy=MetadataPolicy()).parsestr(pkg_info)
m['License'] = 'GPL'
description = m['Description']
description_lines = description.splitlines()
m.set_payload(description_lines[0]
+ '\n'
+ textwrap.dedent('\n'.join(description_lines[1:]))
+ '\n')
del m['Description']
# Correct if sys.stdout.encoding == 'UTF-8':
Generator(sys.stdout, maxheaderlen=0).flatten(m)
Appendix B
==========
Metadata v2.0 guidelines versus setuptools::
$ ./pepsort.py
Comparing PEP 426 version sort to setuptools.
Analysing release versions
Compatible: 24477 / 28194 (86.82 %)
Compatible with translation: 247 / 28194 (0.88 %)
Compatible with filtering: 84 / 28194 (0.30 %)
No compatible versions: 420 / 28194 (1.49 %)
Sorts differently (after translations): 0 / 28194 (0.00 %)
Sorts differently (no translations): 0 / 28194 (0.00 %)
No applicable versions: 2966 / 28194 (10.52 %)
Analysing public versions
Compatible: 25600 / 28194 (90.80 %)
Compatible with translation: 1505 / 28194 (5.34 %)
Compatible with filtering: 13 / 28194 (0.05 %)
No compatible versions: 420 / 28194 (1.49 %)
Sorts differently (after translations): 0 / 28194 (0.00 %)
Sorts differently (no translations): 0 / 28194 (0.00 %)
No applicable versions: 656 / 28194 (2.33 %)
Analysing all versions
Compatible: 24239 / 28194 (85.97 %)
Compatible with translation: 2833 / 28194 (10.05 %)
Compatible with filtering: 513 / 28194 (1.82 %)
No compatible versions: 320 / 28194 (1.13 %)
Sorts differently (after translations): 38 / 28194 (0.13 %)
Sorts differently (no translations): 2 / 28194 (0.01 %)
No applicable versions: 249 / 28194 (0.88 %)
Metadata v1.2 guidelines versus setuptools::
$ ./pepsort.py 386
Comparing PEP 386 version sort to setuptools.
Analysing release versions
Compatible: 24244 / 28194 (85.99 %)
Compatible with translation: 247 / 28194 (0.88 %)
Compatible with filtering: 84 / 28194 (0.30 %)
No compatible versions: 648 / 28194 (2.30 %)
Sorts differently (after translations): 0 / 28194 (0.00 %)
Sorts differently (no translations): 0 / 28194 (0.00 %)
No applicable versions: 2971 / 28194 (10.54 %)
Analysing public versions
Compatible: 25371 / 28194 (89.99 %)
Compatible with translation: 1507 / 28194 (5.35 %)
Compatible with filtering: 12 / 28194 (0.04 %)
No compatible versions: 648 / 28194 (2.30 %)
Sorts differently (after translations): 0 / 28194 (0.00 %)
Sorts differently (no translations): 0 / 28194 (0.00 %)
No applicable versions: 656 / 28194 (2.33 %)
Analysing all versions
Compatible: 23969 / 28194 (85.01 %)
Compatible with translation: 2789 / 28194 (9.89 %)
Compatible with filtering: 530 / 28194 (1.88 %)
No compatible versions: 547 / 28194 (1.94 %)
Sorts differently (after translations): 96 / 28194 (0.34 %)
Sorts differently (no translations): 14 / 28194 (0.05 %)
No applicable versions: 249 / 28194 (0.88 %)
Copyright
=========
This document has been placed in the public domain.
..
Local Variables:
mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70
End: