JGroups 3.x hasn't been updated in some time now. The last release was
in April 2020 almost 2 years ago. Lots of protocols have been updated
and added and users are wanting to use them. There is also increasing
concern about using older components triggered mainly by other
recently-discovered high-profile vulnerabilities in the wider Open
Source Java community.
This commit bumps JGroups up to the latest release - 5.2.0.Final.
However, there is a cost associated with upgrading.
The old-style properties configuration is no longer supported. I think
it's unlikely that end-users are leveraging this because it is not
exposed via broker.xml. The JGroups XML configuration has been around
for a long time, is widely adopted, and is still supported. I expect
most (if not all) users are using this. However, a handful of tests
needed to be updated and/or removed to deal with this absence.
Some protocols and/or protocol properties are no longer supported. This
means that users may have to change their JGroups stack configurations
when they upgrade. For example, our own clustered-jgroups example had to
be updated or it wouldn't run properly.
* Add BindingDTO to allow configuring multiple addresses to listen on
* Start a new ServerConnector for each binding and deploy the corresponding web-applications
* Update documentation and tests
* Add tests to verify old and new configuration style produce equal results
* Add BindingDTO to allow configuring multiple addresses to listen on
* Start a new ServerConnector for each binding and deploy the corresponding web-applications
* Update documentation and tests
* Add tests to verify old and new configuration style produce equal results
- Checkstyle verification fails on JMSXDeliveryCountTest
because of empty line with trailing spaces
- examples classes DummyXid failed to compile because of
uncommented separation comment
Back in version 2.17.0 we began to provide Maven artifacts for Jakarta
Messaging client resources. This commit expands that support in the
following ways:
- Distribute a Jakarta Messaging 3.0 client with the broker (in the
'lib/client' directory alongside the JMS client.
- Update documentation.
- Add example using the Jakarta Messaging client.
- Update Artemis CLI to use core instead of JMS as it was causing
conflicts with the new Jarkarta Messaging client.
- Add example to build Jarkarta Messaging version of the JCA RA for
deployment into Jakarta EE 9 application servers.
The static-selector example was using a multicast queue instead of an
anycast queue which meant that the consumer never actually received any
of the messages. Furthermore, it wasn't actually verifying that it
received the proper messages so there was no failure. This commit
resolves these issues.
- Adding a paragraph about addressing and distinct queue names
- Renaming match on peers, senders and receivers as "address-match"
- Changing qpid dispatch test to use a single listener
- Fixing reconnect attemps message
The default JAAS security manager doesn't need the address/FQQN for
authorization, but I'm putting it back into the interface because there
are other use cases which *do* need it.
Both authentication and authorization will hit the underlying security
repository (e.g. files, LDAP, etc.). For example, creating a JMS
connection and a consumer will result in 2 hits with the *same*
authentication request. This can cause unwanted (and unnecessary)
resource utilization, especially in the case of networked configuration
like LDAP.
There is already a rudimentary cache for authorization, but it is
cleared *totally* every 10 seconds by default (controlled via the
security-invalidation-interval setting), and it must be populated
initially which still results in duplicate auth requests.
This commit optimizes authentication and authorization via the following
changes:
- Replace our home-grown cache with Google Guava's cache. This provides
simple caching with both time-based and size-based LRU eviction. See more
at https://github.com/google/guava/wiki/CachesExplained. I also thought
about using Caffeine, but we already have a dependency on Guava and the
cache implementions look to be negligibly different for this use-case.
- Add caching for authentication. Both successful and unsuccessful
authentication attempts will be cached to spare the underlying security
repository as much as possible. Authenticated Subjects will be cached
and re-used whenever possible.
- Authorization will used Subjects cached during authentication. If the
required Subject is not in the cache it will be fetched from the
underlying security repo.
- Caching can be disabled by setting the security-invalidation-interval
to 0.
- Cache sizes are configurable.
- Management operations exist to inspect cache sizes at runtime.
This commit introduces the ability to configure a downstream connection
for federation. This works by sending information to the remote broker
and that broker will parse the message and create a new upstream back
to the original broker.