Javadoc.
This commit is contained in:
parent
bc93a9f76a
commit
085816b7cf
|
@ -214,18 +214,19 @@ public class Gamma {
|
|||
private static final double INV_GAMMA1P_M1_C13 = -.205633841697760710345015413002057E-06;
|
||||
|
||||
/**
|
||||
* Default constructor. Prohibit instantiation.
|
||||
* Class contains only static methods.
|
||||
*/
|
||||
private Gamma() {}
|
||||
|
||||
/**
|
||||
* Returns the value of \( \log \Gamma(x) \) for \( x > 0 \).
|
||||
* Computes the function \( \ln \Gamma(x) \) for \( x > 0 \).
|
||||
*
|
||||
* <p>
|
||||
* For \( x \leq 8 \), the implementation is based on the double precision
|
||||
* implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
|
||||
* {@code DGAMLN}. For \( x \geq 8 \), the implementation is based on
|
||||
* </p>
|
||||
*
|
||||
* <ul>
|
||||
* <li><a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma
|
||||
* Function</a>, equation (28).</li>
|
||||
|
@ -237,7 +238,7 @@ public class Gamma {
|
|||
* </ul>
|
||||
*
|
||||
* @param x Argument.
|
||||
* @return the value of {@code log(Gamma(x))} or {@code NaN} if {@code x <= 0}.
|
||||
* @return \( \ln \Gamma(x) \), or {@code NaN} if {@code x <= 0}.
|
||||
*/
|
||||
public static double logGamma(double x) {
|
||||
double ret;
|
||||
|
@ -266,11 +267,11 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the regularized gamma function \( P(a, x) \).
|
||||
* Computes the regularized gamma function \( P(a, x) \).
|
||||
*
|
||||
* @param a Parameter.
|
||||
* @param a Parameter \( a \).
|
||||
* @param x Value.
|
||||
* @return the regularized gamma function P(a, x).
|
||||
* @return \( P(a, x) \)
|
||||
* @throws MaxCountExceededException if the algorithm fails to converge.
|
||||
*/
|
||||
public static double regularizedGammaP(double a, double x) {
|
||||
|
@ -278,7 +279,7 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the regularized gamma function \( P(a, x) \).
|
||||
* Computes the regularized gamma function \( P(a, x) \).
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <ul>
|
||||
|
@ -296,13 +297,13 @@ public class Gamma {
|
|||
* </li>
|
||||
* </ul>
|
||||
*
|
||||
* @param a the a parameter.
|
||||
* @param x the value.
|
||||
* @param a Parameter \( a \).
|
||||
* @param x Argument.
|
||||
* @param epsilon When the absolute value of the nth item in the
|
||||
* series is less than epsilon the approximation ceases to calculate
|
||||
* further elements in the series.
|
||||
* @param maxIterations Maximum number of "iterations" to complete.
|
||||
* @return the regularized gamma function P(a, x)
|
||||
* @return \( P(a, x) \)
|
||||
* @throws MaxCountExceededException if the algorithm fails to converge.
|
||||
*/
|
||||
public static double regularizedGammaP(double a,
|
||||
|
@ -347,11 +348,11 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
|
||||
* Computes the regularized gamma function \( Q(a, x) = 1 - P(a, x) \).
|
||||
*
|
||||
* @param a the a parameter.
|
||||
* @param x the value.
|
||||
* @return the regularized gamma function Q(a, x)
|
||||
* @param a Parameter \( a \).
|
||||
* @param x Argument.
|
||||
* @return \( Q(a, x) \)
|
||||
* @throws MaxCountExceededException if the algorithm fails to converge.
|
||||
*/
|
||||
public static double regularizedGammaQ(double a, double x) {
|
||||
|
@ -359,7 +360,7 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the regularized gamma function \( Q(a, x) = 1 - P(a, x) \).
|
||||
* Computes the regularized gamma function \( Q(a, x) = 1 - P(a, x) \).
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <ul>
|
||||
|
@ -374,13 +375,13 @@ public class Gamma {
|
|||
* </li>
|
||||
* </ul>
|
||||
*
|
||||
* @param a the a parameter.
|
||||
* @param x the value.
|
||||
* @param a Parameter \( a \).
|
||||
* @param x Argument.
|
||||
* @param epsilon When the absolute value of the nth item in the
|
||||
* series is less than epsilon the approximation ceases to calculate
|
||||
* further elements in the series.
|
||||
* @param maxIterations Maximum number of "iterations" to complete.
|
||||
* @return the regularized gamma function P(a, x)
|
||||
* @return \( Q(a, x) \)
|
||||
* @throws MaxCountExceededException if the algorithm fails to converge.
|
||||
*/
|
||||
public static double regularizedGammaQ(final double a,
|
||||
|
@ -423,7 +424,9 @@ public class Gamma {
|
|||
|
||||
|
||||
/**
|
||||
* Computes the digamma function.
|
||||
* Computes the digamma function, defined as the logarithmic derivative
|
||||
* of the \( \Gamma \) function:
|
||||
* \( \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma^\prime(x)}{\Gamma(x)} \).
|
||||
*
|
||||
* <p>This is an independently written implementation of the algorithm described in
|
||||
* Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.
|
||||
|
@ -477,16 +480,17 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Computes the trigamma function.
|
||||
* This function is derived by taking the derivative of the implementation
|
||||
* of digamma.
|
||||
* Computes the trigamma function \( \psi_1(x) = \frac{d^2}{dx^2} (\ln \Gamma(x)) \).
|
||||
* <p>
|
||||
* This function is the derivative of the {@link #digamma(double) digamma function}.
|
||||
* </p>
|
||||
*
|
||||
* @param x Argument.
|
||||
* @return {@code trigamma(x)} to within \( 10^{-8} \) relative or absolute
|
||||
* @return \( \psi_1(x) \) to within \( 10^{-8} \) relative or absolute
|
||||
* error whichever is smaller
|
||||
*
|
||||
* @see <a href="http://en.wikipedia.org/wiki/Trigamma_function">Trigamma</a>
|
||||
* @see Gamma#digamma(double)
|
||||
* @see #digamma(double)
|
||||
*
|
||||
* @since 2.0
|
||||
*/
|
||||
|
@ -512,12 +516,13 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Computes the Lanczos approximation used to compute the gamma function.
|
||||
*
|
||||
* <p>
|
||||
* Returns the Lanczos approximation used to compute the gamma function.
|
||||
* The Lanczos approximation is related to the Gamma function by the
|
||||
* following equation
|
||||
* \[
|
||||
* \Gamma(x) = \sqrt{2\pi} \, \frac{(x + g + 1/2)^{x + \frac{1}{2}} \, e^{-x - g - \frac{1}{2}} \, \mathrm{lanczos}(x)}
|
||||
* \Gamma(x) = \sqrt{2\pi} \, \frac{(g + x + \frac{1}{2})^{x + \frac{1}{2}} \, e^{-(g + x + \frac{1}{2})} \, \mathrm{lanczos}(x)}
|
||||
* {x}
|
||||
* \]
|
||||
* where \(g\) is the Lanczos constant.
|
||||
|
@ -525,10 +530,12 @@ public class Gamma {
|
|||
*
|
||||
* @param x Argument.
|
||||
* @return The Lanczos approximation.
|
||||
*
|
||||
* @see <a href="http://mathworld.wolfram.com/LanczosApproximation.html">Lanczos Approximation</a>
|
||||
* equations (1) through (5), and Paul Godfrey's
|
||||
* <a href="http://my.fit.edu/~gabdo/gamma.txt">Note on the computation
|
||||
* of the convergent Lanczos complex Gamma approximation</a>
|
||||
*
|
||||
* @since 3.1
|
||||
*/
|
||||
public static double lanczos(final double x) {
|
||||
|
@ -540,14 +547,17 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the value of \( 1 / \Gamma(1 + x) - 1 \) for \( -0.5 \leq x \leq 1.5 \).
|
||||
* Computes the function \( \frac{1}{\Gamma(1 + x)} - 1 \) for \( -0.5 \leq x \leq 1.5 \).
|
||||
* <p>
|
||||
* This implementation is based on the double precision implementation in
|
||||
* the <em>NSWC Library of Mathematics Subroutines</em>, {@code DGAM1}.
|
||||
* </p>
|
||||
*
|
||||
* @param x Argument.
|
||||
* @return The value of {@code 1.0 / Gamma(1.0 + x) - 1.0}.
|
||||
* @return \( \frac{1}{\Gamma(1 + x)} - 1 \)
|
||||
* @throws NumberIsTooSmallException if {@code x < -0.5}
|
||||
* @throws NumberIsTooLargeException if {@code x > 1.5}
|
||||
*
|
||||
* @since 3.1
|
||||
*/
|
||||
public static double invGamma1pm1(final double x) {
|
||||
|
@ -633,12 +643,14 @@ public class Gamma {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the value of \( \log \Gamma(1 + x) \) for \( -0.5 \leq x \leq 1.5 \).
|
||||
* Computes the function \( \ln \Gamma(1 + x) \) for \( -0.5 \leq x \leq 1.5 \).
|
||||
* <p>
|
||||
* This implementation is based on the double precision implementation in
|
||||
* the <em>NSWC Library of Mathematics Subroutines</em>, {@code DGMLN1}.
|
||||
* </p>
|
||||
*
|
||||
* @param x Argument.
|
||||
* @return The value of {@code log(Gamma(1 + x))}.
|
||||
* @return \( \ln \Gamma(1 + x) \)
|
||||
* @throws NumberIsTooSmallException if {@code x < -0.5}.
|
||||
* @throws NumberIsTooLargeException if {@code x > 1.5}.
|
||||
* @since 3.1
|
||||
|
@ -658,12 +670,15 @@ public class Gamma {
|
|||
|
||||
|
||||
/**
|
||||
* Returns the value of \( \Gamma(x) \).
|
||||
* Computes the value of \( \Gamma(x) \).
|
||||
* <p>
|
||||
* Based on the <em>NSWC Library of Mathematics Subroutines</em> double
|
||||
* precision implementation, {@code DGAMMA}.
|
||||
* </p>
|
||||
*
|
||||
* @param x Argument.
|
||||
* @return the value of {@code Gamma(x)}.
|
||||
* @return \( \Gamma(x) \)
|
||||
*
|
||||
* @since 3.1
|
||||
*/
|
||||
public static double gamma(final double x) {
|
||||
|
|
Loading…
Reference in New Issue