Intermediate level implementations of variable-step Runge-Kutta methods.

This commit is contained in:
Luc Maisonobe 2016-01-06 12:24:29 +01:00
parent 637027aa50
commit 1a26866d77
2 changed files with 745 additions and 0 deletions

View File

@ -0,0 +1,366 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.ode.AbstractFieldIntegrator;
import org.apache.commons.math4.ode.FieldEquationsMapper;
import org.apache.commons.math4.ode.FieldODEState;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
* This abstract class holds the common part of all adaptive
* stepsize integrators for Ordinary Differential Equations.
*
* <p>These algorithms perform integration with stepsize control, which
* means the user does not specify the integration step but rather a
* tolerance on error. The error threshold is computed as
* <pre>
* threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
* </pre>
* where absTol_i is the absolute tolerance for component i of the
* state vector and relTol_i is the relative tolerance for the same
* component. The user can also use only two scalar values absTol and
* relTol which will be used for all components.
* </p>
* <p>
* Note that <em>only</em> the {@link FieldODEState#getState() main part}
* of the state vector is used for stepsize control. The {@link
* FieldODEState#getSecondaryState(int) secondary parts} of the state
* vector are explicitly ignored for stepsize control.
* </p>
*
* <p>If the estimated error for ym+1 is such that
* <pre>
* sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
* </pre>
*
* (where n is the main set dimension) then the step is accepted,
* otherwise the step is rejected and a new attempt is made with a new
* stepsize.</p>
*
* @param <T> the type of the field elements
* @since 3.6
*
*/
public abstract class AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>>
extends AbstractFieldIntegrator<T> {
/** Allowed absolute scalar error. */
protected double scalAbsoluteTolerance;
/** Allowed relative scalar error. */
protected double scalRelativeTolerance;
/** Allowed absolute vectorial error. */
protected double[] vecAbsoluteTolerance;
/** Allowed relative vectorial error. */
protected double[] vecRelativeTolerance;
/** Main set dimension. */
protected int mainSetDimension;
/** User supplied initial step. */
private T initialStep;
/** Minimal step. */
private T minStep;
/** Maximal step. */
private T maxStep;
/** Build an integrator with the given stepsize bounds.
* The default step handler does nothing.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param scalAbsoluteTolerance allowed absolute error
* @param scalRelativeTolerance allowed relative error
*/
public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
final double minStep, final double maxStep,
final double scalAbsoluteTolerance,
final double scalRelativeTolerance) {
super(field, name);
setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
resetInternalState();
}
/** Build an integrator with the given stepsize bounds.
* The default step handler does nothing.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param vecAbsoluteTolerance allowed absolute error
* @param vecRelativeTolerance allowed relative error
*/
public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance,
final double[] vecRelativeTolerance) {
super(field, name);
setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
resetInternalState();
}
/** Set the adaptive step size control parameters.
* <p>
* A side effect of this method is to also reset the initial
* step so it will be automatically computed by the integrator
* if {@link #setInitialStepSize(double) setInitialStepSize}
* is not called by the user.
* </p>
* @param minimalStep minimal step (must be positive even for backward
* integration), the last step can be smaller than this
* @param maximalStep maximal step (must be positive even for backward
* integration)
* @param absoluteTolerance allowed absolute error
* @param relativeTolerance allowed relative error
*/
public void setStepSizeControl(final double minimalStep, final double maximalStep,
final double absoluteTolerance,
final double relativeTolerance) {
minStep = getField().getZero().add(FastMath.abs(minimalStep));
maxStep = getField().getZero().add(FastMath.abs(maximalStep));
initialStep = getField().getOne().negate();
scalAbsoluteTolerance = absoluteTolerance;
scalRelativeTolerance = relativeTolerance;
vecAbsoluteTolerance = null;
vecRelativeTolerance = null;
}
/** Set the adaptive step size control parameters.
* <p>
* A side effect of this method is to also reset the initial
* step so it will be automatically computed by the integrator
* if {@link #setInitialStepSize(double) setInitialStepSize}
* is not called by the user.
* </p>
* @param minimalStep minimal step (must be positive even for backward
* integration), the last step can be smaller than this
* @param maximalStep maximal step (must be positive even for backward
* integration)
* @param absoluteTolerance allowed absolute error
* @param relativeTolerance allowed relative error
*/
public void setStepSizeControl(final double minimalStep, final double maximalStep,
final double[] absoluteTolerance,
final double[] relativeTolerance) {
minStep = getField().getZero().add(FastMath.abs(minimalStep));
maxStep = getField().getZero().add(FastMath.abs(maximalStep));
initialStep = getField().getOne().negate();
scalAbsoluteTolerance = 0;
scalRelativeTolerance = 0;
vecAbsoluteTolerance = absoluteTolerance.clone();
vecRelativeTolerance = relativeTolerance.clone();
}
/** Set the initial step size.
* <p>This method allows the user to specify an initial positive
* step size instead of letting the integrator guess it by
* itself. If this method is not called before integration is
* started, the initial step size will be estimated by the
* integrator.</p>
* @param initialStepSize initial step size to use (must be positive even
* for backward integration ; providing a negative value or a value
* outside of the min/max step interval will lead the integrator to
* ignore the value and compute the initial step size by itself)
*/
public void setInitialStepSize(final T initialStepSize) {
if (initialStepSize.subtract(minStep).getReal() < 0 ||
initialStepSize.subtract(maxStep).getReal() > 0) {
initialStep = getField().getOne().negate();
} else {
initialStep = initialStepSize;
}
}
/** {@inheritDoc} */
@Override
protected void sanityChecks(final FieldODEState<T> eqn, final T t)
throws DimensionMismatchException, NumberIsTooSmallException {
super.sanityChecks(eqn, t);
mainSetDimension = eqn.getState().length;
if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
}
if (vecRelativeTolerance != null && vecRelativeTolerance.length != mainSetDimension) {
throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
}
}
/** Initialize the integration step.
* @param forward forward integration indicator
* @param order order of the method
* @param scale scaling vector for the state vector (can be shorter than state vector)
* @param state0 state at integration start time
* @param mapper mapper for all the equations
* @return first integration step
* @exception MaxCountExceededException if the number of functions evaluations is exceeded
* @exception DimensionMismatchException if arrays dimensions do not match equations settings
*/
public T initializeStep(final boolean forward, final int order, final T[] scale,
final FieldODEStateAndDerivative<T> state0,
final FieldEquationsMapper<T> mapper)
throws MaxCountExceededException, DimensionMismatchException {
if (initialStep.getReal() > 0) {
// use the user provided value
return forward ? initialStep : initialStep.negate();
}
// very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
// this guess will be used to perform an Euler step
final T[] y0 = mapper.mapState(state0);
final T[] yDot0 = mapper.mapDerivative(state0);
T yOnScale2 = getField().getZero();
T yDotOnScale2 = getField().getZero();
for (int j = 0; j < scale.length; ++j) {
final T ratio = y0[j].divide(scale[j]);
yOnScale2 = yOnScale2.add(ratio.multiply(ratio));
final T ratioDot = yDot0[j].divide(scale[j]);
yDotOnScale2 = yDotOnScale2.add(ratioDot.multiply(ratioDot));
}
T h = (yOnScale2.getReal() < 1.0e-10 || yDotOnScale2.getReal() < 1.0e-10) ?
getField().getZero().add(1.0e-6) :
yOnScale2.divide(yDotOnScale2).sqrt().multiply(0.01);
if (! forward) {
h = h.negate();
}
// perform an Euler step using the preceding rough guess
final T[] y1 = MathArrays.buildArray(getField(), y0.length);
for (int j = 0; j < y0.length; ++j) {
y1[j] = y0[j].add(yDot0[j].multiply(h));
}
final T[] yDot1 = computeDerivatives(state0.getTime().add(h), y1);
// estimate the second derivative of the solution
T yDDotOnScale = getField().getZero();
for (int j = 0; j < scale.length; ++j) {
final T ratioDotDot = yDot1[j].subtract(yDot0[j]).divide(scale[j]);
yDDotOnScale = yDDotOnScale.add(ratioDotDot.multiply(ratioDotDot));
}
yDDotOnScale = yDDotOnScale.sqrt().divide(h);
// step size is computed such that
// h^order * max (||y'/tol||, ||y''/tol||) = 0.01
final T maxInv2 = MathUtils.max(yDotOnScale2.sqrt(), yDDotOnScale);
final T h1 = maxInv2.getReal() < 1.0e-15 ?
MathUtils.max(getField().getZero().add(1.0e-6), h.abs().multiply(0.001)) :
maxInv2.multiply(100).reciprocal().pow(1.0 / order);
h = MathUtils.min(h.abs().multiply(100), h1);
h = MathUtils.max(h, state0.getTime().abs().multiply(1.0e-12)); // avoids cancellation when computing t1 - t0
h = MathUtils.max(minStep, MathUtils.min(maxStep, h));
if (! forward) {
h = h.negate();
}
return h;
}
/** Filter the integration step.
* @param h signed step
* @param forward forward integration indicator
* @param acceptSmall if true, steps smaller than the minimal value
* are silently increased up to this value, if false such small
* steps generate an exception
* @return a bounded integration step (h if no bound is reach, or a bounded value)
* @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
*/
protected T filterStep(final T h, final boolean forward, final boolean acceptSmall)
throws NumberIsTooSmallException {
T filteredH = h;
if (h.abs().subtract(minStep).getReal() < 0) {
if (acceptSmall) {
filteredH = forward ? minStep : minStep.negate();
} else {
throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
h.abs().getReal(), minStep.getReal(), true);
}
}
if (filteredH.subtract(maxStep).getReal() > 0) {
filteredH = maxStep;
} else if (filteredH.add(maxStep).getReal() < 0) {
filteredH = maxStep.negate();
}
return filteredH;
}
/** Reset internal state to dummy values. */
protected void resetInternalState() {
stepStart = null;
stepSize = minStep.multiply(maxStep).sqrt();
}
/** Get the minimal step.
* @return minimal step
*/
public T getMinStep() {
return minStep;
}
/** Get the maximal step.
* @return maximal step
*/
public T getMaxStep() {
return maxStep;
}
}

View File

@ -0,0 +1,379 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.NoBracketingException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.ode.FieldExpandableODE;
import org.apache.commons.math4.ode.FieldODEState;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
* This class implements the common part of all embedded Runge-Kutta
* integrators for Ordinary Differential Equations.
*
* <p>These methods are embedded explicit Runge-Kutta methods with two
* sets of coefficients allowing to estimate the error, their Butcher
* arrays are as follows :
* <pre>
* 0 |
* c2 | a21
* c3 | a31 a32
* ... | ...
* cs | as1 as2 ... ass-1
* |--------------------------
* | b1 b2 ... bs-1 bs
* | b'1 b'2 ... b's-1 b's
* </pre>
* </p>
*
* <p>In fact, we rather use the array defined by ej = bj - b'j to
* compute directly the error rather than computing two estimates and
* then comparing them.</p>
*
* <p>Some methods are qualified as <i>fsal</i> (first same as last)
* methods. This means the last evaluation of the derivatives in one
* step is the same as the first in the next step. Then, this
* evaluation can be reused from one step to the next one and the cost
* of such a method is really s-1 evaluations despite the method still
* has s stages. This behaviour is true only for successful steps, if
* the step is rejected after the error estimation phase, no
* evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
* asi = bi for all i.</p>
*
* @param <T> the type of the field elements
* @since 3.6
*/
public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
extends AdaptiveStepsizeFieldIntegrator<T> {
/** Indicator for <i>fsal</i> methods. */
private final boolean fsal;
/** Time steps from Butcher array (without the first zero). */
private final double[] c;
/** Internal weights from Butcher array (without the first empty row). */
private final double[][] a;
/** External weights for the high order method from Butcher array. */
private final double[] b;
/** Prototype of the step interpolator. */
private final RungeKuttaFieldStepInterpolator<T> prototype;
/** Stepsize control exponent. */
private final double exp;
/** Safety factor for stepsize control. */
private T safety;
/** Minimal reduction factor for stepsize control. */
private T minReduction;
/** Maximal growth factor for stepsize control. */
private T maxGrowth;
/** Build a Runge-Kutta integrator with the given Butcher array.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param fsal indicate that the method is an <i>fsal</i>
* @param c time steps from Butcher array (without the first zero)
* @param a internal weights from Butcher array (without the first empty row)
* @param b propagation weights for the high order method from Butcher array
* @param prototype prototype of the step interpolator to use
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param scalAbsoluteTolerance allowed absolute error
* @param scalRelativeTolerance allowed relative error
*/
protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final boolean fsal,
final double[] c, final double[][] a, final double[] b,
final RungeKuttaFieldStepInterpolator<T> prototype,
final double minStep, final double maxStep,
final double scalAbsoluteTolerance,
final double scalRelativeTolerance) {
super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
this.fsal = fsal;
this.c = c;
this.a = a;
this.b = b;
this.prototype = prototype;
exp = -1.0 / getOrder();
// set the default values of the algorithm control parameters
setSafety(field.getZero().add(0.9));
setMinReduction(field.getZero().add(0.2));
setMaxGrowth(field.getZero().add(10.0));
}
/** Build a Runge-Kutta integrator with the given Butcher array.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param fsal indicate that the method is an <i>fsal</i>
* @param c time steps from Butcher array (without the first zero)
* @param a internal weights from Butcher array (without the first empty row)
* @param b propagation weights for the high order method from Butcher array
* @param prototype prototype of the step interpolator to use
* @param minStep minimal step (must be positive even for backward
* integration), the last step can be smaller than this
* @param maxStep maximal step (must be positive even for backward
* integration)
* @param vecAbsoluteTolerance allowed absolute error
* @param vecRelativeTolerance allowed relative error
*/
protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final boolean fsal,
final double[] c, final double[][] a, final double[] b,
final RungeKuttaFieldStepInterpolator<T> prototype,
final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance,
final double[] vecRelativeTolerance) {
super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
this.fsal = fsal;
this.c = c;
this.a = a;
this.b = b;
this.prototype = prototype;
exp = -1.0 / getOrder();
// set the default values of the algorithm control parameters
setSafety(field.getZero().add(0.9));
setMinReduction(field.getZero().add(0.2));
setMaxGrowth(field.getZero().add(10.0));
}
/** Get the order of the method.
* @return order of the method
*/
public abstract int getOrder();
/** Get the safety factor for stepsize control.
* @return safety factor
*/
public T getSafety() {
return safety;
}
/** Set the safety factor for stepsize control.
* @param safety safety factor
*/
public void setSafety(final T safety) {
this.safety = safety;
}
/** {@inheritDoc} */
@Override
public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
final FieldODEState<T> initialState, final T finalTime)
throws NumberIsTooSmallException, DimensionMismatchException,
MaxCountExceededException, NoBracketingException {
sanityChecks(initialState, finalTime);
final T t0 = initialState.getTime();
final T[] y0 = equations.getMapper().mapState(initialState);
stepStart = initIntegration(equations, t0, y0, finalTime);
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
// create some internal working arrays
final int stages = c.length + 1;
T[] y = y0;
final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
final T[] yTmp = MathArrays.buildArray(getField(), y0.length);
// set up an interpolator sharing the integrator arrays
final RungeKuttaFieldStepInterpolator<T> interpolator = (RungeKuttaFieldStepInterpolator<T>) prototype.copy();
interpolator.reinitialize(this, y0, yDotK, forward, equations.getMapper());
interpolator.storeState(stepStart);
// set up integration control objects
T hNew = getField().getZero();
boolean firstTime = true;
// main integration loop
isLastStep = false;
do {
interpolator.shift();
// iterate over step size, ensuring local normalized error is smaller than 1
T error = getField().getZero().add(10);
while (error.subtract(1.0).getReal() >= 0) {
// first stage
yDotK[0] = stepStart.getDerivative();
if (firstTime) {
final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
if (vecAbsoluteTolerance == null) {
for (int i = 0; i < scale.length; ++i) {
scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
}
} else {
for (int i = 0; i < scale.length; ++i) {
scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
}
}
hNew = initializeStep(forward, getOrder(), scale, stepStart, equations.getMapper());
firstTime = false;
}
stepSize = hNew;
if (forward) {
if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() >= 0) {
stepSize = finalTime.subtract(stepStart.getTime());
}
} else {
if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() <= 0) {
stepSize = finalTime.subtract(stepStart.getTime());
}
}
// next stages
for (int k = 1; k < stages; ++k) {
for (int j = 0; j < y0.length; ++j) {
T sum = yDotK[0][j].multiply(a[k-1][0]);
for (int l = 1; l < k; ++l) {
sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
}
yTmp[j] = y[j].add(stepSize.multiply(sum));
}
yDotK[k] = computeDerivatives(stepStart.getTime().add(stepSize.multiply(c[k-1])), yTmp);
}
// estimate the state at the end of the step
for (int j = 0; j < y0.length; ++j) {
T sum = yDotK[0][j].multiply(b[0]);
for (int l = 1; l < stages; ++l) {
sum = sum.add(yDotK[l][j].multiply(b[l]));
}
yTmp[j] = y[j].add(stepSize.multiply(sum));
}
// estimate the error at the end of the step
error = estimateError(yDotK, y, yTmp, stepSize);
if (error.subtract(1.0).getReal() >= 0) {
// reject the step and attempt to reduce error by stepsize control
final T factor = MathUtils.min(maxGrowth,
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
hNew = filterStep(stepSize.multiply(factor), forward, false);
}
}
final T stepEnd = stepStart.getTime().add(stepSize);
final T[] yDotTmp = fsal ? yDotK[stages - 1] : computeDerivatives(stepEnd, yTmp);
final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
// local error is small enough: accept the step, trigger events and step handlers
interpolator.storeState(stateTmp);
System.arraycopy(yTmp, 0, y, 0, y0.length);
stepStart = acceptStep(interpolator, finalTime);
System.arraycopy(y, 0, yTmp, 0, y.length);
if (!isLastStep) {
// prepare next step
interpolator.storeState(stepStart);
// stepsize control for next step
final T factor = MathUtils.min(maxGrowth,
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
final T scaledH = stepSize.multiply(factor);
final T nextT = stepStart.getTime().add(scaledH);
final boolean nextIsLast = forward ?
nextT.subtract(finalTime).getReal() >= 0 :
nextT.subtract(finalTime).getReal() <= 0;
hNew = filterStep(scaledH, forward, nextIsLast);
final T filteredNextT = stepStart.getTime().add(hNew);
final boolean filteredNextIsLast = forward ?
filteredNextT.subtract(finalTime).getReal() >= 0 :
filteredNextT.subtract(finalTime).getReal() <= 0;
if (filteredNextIsLast) {
hNew = finalTime.subtract(stepStart.getTime());
}
}
} while (!isLastStep);
final FieldODEStateAndDerivative<T> finalState = stepStart;
resetInternalState();
return finalState;
}
/** Get the minimal reduction factor for stepsize control.
* @return minimal reduction factor
*/
public T getMinReduction() {
return minReduction;
}
/** Set the minimal reduction factor for stepsize control.
* @param minReduction minimal reduction factor
*/
public void setMinReduction(final T minReduction) {
this.minReduction = minReduction;
}
/** Get the maximal growth factor for stepsize control.
* @return maximal growth factor
*/
public T getMaxGrowth() {
return maxGrowth;
}
/** Set the maximal growth factor for stepsize control.
* @param maxGrowth maximal growth factor
*/
public void setMaxGrowth(final T maxGrowth) {
this.maxGrowth = maxGrowth;
}
/** Compute the error ratio.
* @param yDotK derivatives computed during the first stages
* @param y0 estimate of the step at the start of the step
* @param y1 estimate of the step at the end of the step
* @param h current step
* @return error ratio, greater than 1 if step should be rejected
*/
protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
}