Added and used a specialized exception for duplicate abscissas in sampled functions

git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@506592 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2007-02-12 19:27:16 +00:00
parent 21a95478c2
commit 1bd2978235
4 changed files with 502 additions and 413 deletions

View File

@ -0,0 +1,47 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math;
/**
* Exeption thrown when a sample contains several entries at the same abscissa.
* @version $Revision:$
*/
public class DuplicateSampleAbscissaException extends MathException {
/** Serializable version identifier */
private static final long serialVersionUID = -2271007547170169872L;
/**
* Construct an exception indicating the duplicate abscissa.
* @param abscissa duplicate abscissa
* @param i1 index of one entry having the duplicate abscissa
* @param i2 index of another entry having the duplicate abscissa
*/
public DuplicateSampleAbscissaException(double abscissa, int i1, int i2) {
super("Abscissa {0} is duplicated at both indices {1} and {2}",
new Object[] { new Double(abscissa), new Integer(i1), new Integer(i2) });
}
/**
* Get the duplicate abscissa.
* @return duplicate abscissa
*/
public double getDuplicateAbscissa() {
return ((Double) getArguments()[0]).doubleValue();
}
}

View File

@ -1,122 +1,122 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import java.io.Serializable;
import org.apache.commons.math.MathException;
/**
* Implements the <a href="
* "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
* Divided Difference Algorithm</a> for interpolation of real univariate
* functions. For reference, see <b>Introduction to Numerical Analysis</b>,
* ISBN 038795452X, chapter 2.
* <p>
* The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
* this class provides an easy-to-use interface to it.
*
* @version $Revision$ $Date$
*/
public class DividedDifferenceInterpolator implements UnivariateRealInterpolator,
Serializable {
/** serializable version identifier */
static final long serialVersionUID = 107049519551235069L;
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws MathException if arguments are invalid
*/
public UnivariateRealFunction interpolate(double x[], double y[]) throws
MathException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
double a[], c[];
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.
*/
c = new double[x.length-1];
for (int i = 0; i < c.length; i++) {
c[i] = x[i];
}
a = computeDividedDifference(x, y);
PolynomialFunctionNewtonForm p;
p = new PolynomialFunctionNewtonForm(a, c);
return p;
}
/**
* Returns a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f(x1,...,xk) - f(x0,...,x[k-1])) / (xk - x0)
* </pre><p>
* The computational complexity is O(N^2).
*
* @return a fresh copy of the divided difference array
* @throws MathException if any abscissas coincide
*/
protected static double[] computeDividedDifference(double x[], double y[])
throws MathException {
int i, j, n;
double divdiff[], a[], denominator;
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
n = x.length;
divdiff = new double[n];
for (i = 0; i < n; i++) {
divdiff[i] = y[i]; // initialization
}
a = new double [n];
a[0] = divdiff[0];
for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++) {
denominator = x[j+i] - x[j];
if (denominator == 0.0) {
// This happens only when two abscissas are identical.
throw new MathException
("Identical abscissas cause division by zero.");
}
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import java.io.Serializable;
import org.apache.commons.math.DuplicateSampleAbscissaException;
/**
* Implements the <a href="
* "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
* Divided Difference Algorithm</a> for interpolation of real univariate
* functions. For reference, see <b>Introduction to Numerical Analysis</b>,
* ISBN 038795452X, chapter 2.
* <p>
* The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
* this class provides an easy-to-use interface to it.
*
* @version $Revision$ $Date$
*/
public class DividedDifferenceInterpolator implements UnivariateRealInterpolator,
Serializable {
/** serializable version identifier */
private static final long serialVersionUID = 107049519551235069L;
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws DuplicateSampleAbscissaException if arguments are invalid
*/
public UnivariateRealFunction interpolate(double x[], double y[]) throws
DuplicateSampleAbscissaException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
double a[], c[];
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.
*/
c = new double[x.length-1];
for (int i = 0; i < c.length; i++) {
c[i] = x[i];
}
a = computeDividedDifference(x, y);
PolynomialFunctionNewtonForm p;
p = new PolynomialFunctionNewtonForm(a, c);
return p;
}
/**
* Returns a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f(x1,...,xk) - f(x0,...,x[k-1])) / (xk - x0)
* </pre><p>
* The computational complexity is O(N^2).
*
* @return a fresh copy of the divided difference array
* @throws DuplicateSampleAbscissaException if any abscissas coincide
*/
protected static double[] computeDividedDifference(double x[], double y[])
throws DuplicateSampleAbscissaException {
int i, j, n;
double divdiff[], a[], denominator;
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
n = x.length;
divdiff = new double[n];
for (i = 0; i < n; i++) {
divdiff[i] = y[i]; // initialization
}
a = new double [n];
a[0] = divdiff[0];
for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++) {
denominator = x[j+i] - x[j];
if (denominator == 0.0) {
// This happens only when two abscissas are identical.
throw new DuplicateSampleAbscissaException(x[j], j, j+i);
}
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
}

View File

@ -1,291 +1,295 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import java.io.Serializable;
import org.apache.commons.math.FunctionEvaluationException;
/**
* Implements the representation of a real polynomial function in
* <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
* Lagrange Form</a>. For reference, see <b>Introduction to Numerical
* Analysis</b>, ISBN 038795452X, chapter 2.
* <p>
* The approximated function should be smooth enough for Lagrange polynomial
* to work well. Otherwise, consider using splines instead.
*
* @version $Revision$ $Date$
*/
public class PolynomialFunctionLagrangeForm implements UnivariateRealFunction,
Serializable {
/** serializable version identifier */
static final long serialVersionUID = -3965199246151093920L;
/**
* The coefficients of the polynomial, ordered by degree -- i.e.
* coefficients[0] is the constant term and coefficients[n] is the
* coefficient of x^n where n is the degree of the polynomial.
*/
private double coefficients[];
/**
* Interpolating points (abscissas) and the function values at these points.
*/
private double x[], y[];
/**
* Whether the polynomial coefficients are available.
*/
private boolean coefficientsComputed;
/**
* Construct a Lagrange polynomial with the given abscissas and function
* values. The order of interpolating points are not important.
* <p>
* The constructor makes copy of the input arrays and assigns them.
*
* @param x interpolating points
* @param y function values at interpolating points
* @throws IllegalArgumentException if input arrays are not valid
*/
PolynomialFunctionLagrangeForm(double x[], double y[]) throws
IllegalArgumentException {
verifyInterpolationArray(x, y);
this.x = new double[x.length];
this.y = new double[y.length];
System.arraycopy(x, 0, this.x, 0, x.length);
System.arraycopy(y, 0, this.y, 0, y.length);
coefficientsComputed = false;
}
/**
* Calculate the function value at the given point.
*
* @param z the point at which the function value is to be computed
* @return the function value
* @throws FunctionEvaluationException if a runtime error occurs
* @see UnivariateRealFunction#value(double)
*/
public double value(double z) throws FunctionEvaluationException {
return evaluate(x, y, z);
}
/**
* Returns the degree of the polynomial.
*
* @return the degree of the polynomial
*/
public int degree() {
return x.length - 1;
}
/**
* Returns a copy of the interpolating points array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the interpolating points array
*/
public double[] getInterpolatingPoints() {
double[] out = new double[x.length];
System.arraycopy(x, 0, out, 0, x.length);
return out;
}
/**
* Returns a copy of the interpolating values array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the interpolating values array
*/
public double[] getInterpolatingValues() {
double[] out = new double[y.length];
System.arraycopy(y, 0, out, 0, y.length);
return out;
}
/**
* Returns a copy of the coefficients array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the coefficients array
*/
public double[] getCoefficients() {
if (!coefficientsComputed) {
computeCoefficients();
}
double[] out = new double[coefficients.length];
System.arraycopy(coefficients, 0, out, 0, coefficients.length);
return out;
}
/**
* Evaluate the Lagrange polynomial using
* <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
* Neville's Algorithm</a>. It takes O(N^2) time.
* <p>
* This function is made public static so that users can call it directly
* without instantiating PolynomialFunctionLagrangeForm object.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @param z the point at which the function value is to be computed
* @return the function value
* @throws FunctionEvaluationException if a runtime error occurs
* @throws IllegalArgumentException if inputs are not valid
*/
public static double evaluate(double x[], double y[], double z) throws
FunctionEvaluationException, IllegalArgumentException {
int i, j, n, nearest = 0;
double value, c[], d[], tc, td, divider, w, dist, min_dist;
verifyInterpolationArray(x, y);
n = x.length;
c = new double[n];
d = new double[n];
min_dist = Double.POSITIVE_INFINITY;
for (i = 0; i < n; i++) {
// initialize the difference arrays
c[i] = y[i];
d[i] = y[i];
// find out the abscissa closest to z
dist = Math.abs(z - x[i]);
if (dist < min_dist) {
nearest = i;
min_dist = dist;
}
}
// initial approximation to the function value at z
value = y[nearest];
for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++) {
tc = x[j] - z;
td = x[i+j] - z;
divider = x[j] - x[i+j];
if (divider == 0.0) {
// This happens only when two abscissas are identical.
throw new FunctionEvaluationException(z,
"Identical abscissas cause division by zero: x[" +
i + "] = x[" + (i+j) + "] = " + x[i]);
}
// update the difference arrays
w = (c[j+1] - d[j]) / divider;
c[j] = tc * w;
d[j] = td * w;
}
// sum up the difference terms to get the final value
if (nearest < 0.5*(n-i+1)) {
value += c[nearest]; // fork down
} else {
nearest--;
value += d[nearest]; // fork up
}
}
return value;
}
/**
* Calculate the coefficients of Lagrange polynomial from the
* interpolation data. It takes O(N^2) time.
* <p>
* Note this computation can be ill-conditioned. Use with caution
* and only when it is necessary.
*
* @throws ArithmeticException if any abscissas coincide
*/
protected void computeCoefficients() throws ArithmeticException {
int i, j, n;
double c[], tc[], d, t;
n = degree() + 1;
coefficients = new double[n];
for (i = 0; i < n; i++) {
coefficients[i] = 0.0;
}
// c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
c = new double[n+1];
c[0] = 1.0;
for (i = 0; i < n; i++) {
for (j = i; j > 0; j--) {
c[j] = c[j-1] - c[j] * x[i];
}
c[0] *= (-x[i]);
c[i+1] = 1;
}
tc = new double[n];
for (i = 0; i < n; i++) {
// d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
d = 1;
for (j = 0; j < n; j++) {
if (i != j) {
d *= (x[i] - x[j]);
}
}
if (d == 0.0) {
// This happens only when two abscissas are identical.
throw new ArithmeticException
("Identical abscissas cause division by zero.");
}
t = y[i] / d;
// Lagrange polynomial is the sum of n terms, each of which is a
// polynomial of degree n-1. tc[] are the coefficients of the i-th
// numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
tc[n-1] = c[n]; // actually c[n] = 1
coefficients[n-1] += t * tc[n-1];
for (j = n-2; j >= 0; j--) {
tc[j] = c[j+1] + tc[j+1] * x[i];
coefficients[j] += t * tc[j];
}
}
coefficientsComputed = true;
}
/**
* Verifies that the interpolation arrays are valid.
* <p>
* The interpolating points must be distinct. However it is not
* verified here, it is checked in evaluate() and computeCoefficients().
*
* @throws IllegalArgumentException if not valid
* @see #evaluate(double[], double[], double)
* @see #computeCoefficients()
*/
protected static void verifyInterpolationArray(double x[], double y[]) throws
IllegalArgumentException {
if (x.length < 2 || y.length < 2) {
throw new IllegalArgumentException
("Interpolation requires at least two points.");
}
if (x.length != y.length) {
throw new IllegalArgumentException
("Abscissa and value arrays must have the same length.");
}
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import java.io.Serializable;
import org.apache.commons.math.DuplicateSampleAbscissaException;
import org.apache.commons.math.FunctionEvaluationException;
/**
* Implements the representation of a real polynomial function in
* <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
* Lagrange Form</a>. For reference, see <b>Introduction to Numerical
* Analysis</b>, ISBN 038795452X, chapter 2.
* <p>
* The approximated function should be smooth enough for Lagrange polynomial
* to work well. Otherwise, consider using splines instead.
*
* @version $Revision$ $Date$
*/
public class PolynomialFunctionLagrangeForm implements UnivariateRealFunction,
Serializable {
/** serializable version identifier */
static final long serialVersionUID = -3965199246151093920L;
/**
* The coefficients of the polynomial, ordered by degree -- i.e.
* coefficients[0] is the constant term and coefficients[n] is the
* coefficient of x^n where n is the degree of the polynomial.
*/
private double coefficients[];
/**
* Interpolating points (abscissas) and the function values at these points.
*/
private double x[], y[];
/**
* Whether the polynomial coefficients are available.
*/
private boolean coefficientsComputed;
/**
* Construct a Lagrange polynomial with the given abscissas and function
* values. The order of interpolating points are not important.
* <p>
* The constructor makes copy of the input arrays and assigns them.
*
* @param x interpolating points
* @param y function values at interpolating points
* @throws IllegalArgumentException if input arrays are not valid
*/
PolynomialFunctionLagrangeForm(double x[], double y[]) throws
IllegalArgumentException {
verifyInterpolationArray(x, y);
this.x = new double[x.length];
this.y = new double[y.length];
System.arraycopy(x, 0, this.x, 0, x.length);
System.arraycopy(y, 0, this.y, 0, y.length);
coefficientsComputed = false;
}
/**
* Calculate the function value at the given point.
*
* @param z the point at which the function value is to be computed
* @return the function value
* @throws FunctionEvaluationException if a runtime error occurs
* @see UnivariateRealFunction#value(double)
*/
public double value(double z) throws FunctionEvaluationException {
try {
return evaluate(x, y, z);
} catch (DuplicateSampleAbscissaException e) {
throw new FunctionEvaluationException(z, e.getPattern(), e.getArguments(), e);
}
}
/**
* Returns the degree of the polynomial.
*
* @return the degree of the polynomial
*/
public int degree() {
return x.length - 1;
}
/**
* Returns a copy of the interpolating points array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the interpolating points array
*/
public double[] getInterpolatingPoints() {
double[] out = new double[x.length];
System.arraycopy(x, 0, out, 0, x.length);
return out;
}
/**
* Returns a copy of the interpolating values array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the interpolating values array
*/
public double[] getInterpolatingValues() {
double[] out = new double[y.length];
System.arraycopy(y, 0, out, 0, y.length);
return out;
}
/**
* Returns a copy of the coefficients array.
* <p>
* Changes made to the returned copy will not affect the polynomial.
*
* @return a fresh copy of the coefficients array
*/
public double[] getCoefficients() {
if (!coefficientsComputed) {
computeCoefficients();
}
double[] out = new double[coefficients.length];
System.arraycopy(coefficients, 0, out, 0, coefficients.length);
return out;
}
/**
* Evaluate the Lagrange polynomial using
* <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
* Neville's Algorithm</a>. It takes O(N^2) time.
* <p>
* This function is made public static so that users can call it directly
* without instantiating PolynomialFunctionLagrangeForm object.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @param z the point at which the function value is to be computed
* @return the function value
* @throws DuplicateSampleAbscissaException if the sample has duplicate abscissas
* @throws IllegalArgumentException if inputs are not valid
*/
public static double evaluate(double x[], double y[], double z) throws
DuplicateSampleAbscissaException, IllegalArgumentException {
int i, j, n, nearest = 0;
double value, c[], d[], tc, td, divider, w, dist, min_dist;
verifyInterpolationArray(x, y);
n = x.length;
c = new double[n];
d = new double[n];
min_dist = Double.POSITIVE_INFINITY;
for (i = 0; i < n; i++) {
// initialize the difference arrays
c[i] = y[i];
d[i] = y[i];
// find out the abscissa closest to z
dist = Math.abs(z - x[i]);
if (dist < min_dist) {
nearest = i;
min_dist = dist;
}
}
// initial approximation to the function value at z
value = y[nearest];
for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++) {
tc = x[j] - z;
td = x[i+j] - z;
divider = x[j] - x[i+j];
if (divider == 0.0) {
// This happens only when two abscissas are identical.
throw new DuplicateSampleAbscissaException(x[i], i, i+j);
}
// update the difference arrays
w = (c[j+1] - d[j]) / divider;
c[j] = tc * w;
d[j] = td * w;
}
// sum up the difference terms to get the final value
if (nearest < 0.5*(n-i+1)) {
value += c[nearest]; // fork down
} else {
nearest--;
value += d[nearest]; // fork up
}
}
return value;
}
/**
* Calculate the coefficients of Lagrange polynomial from the
* interpolation data. It takes O(N^2) time.
* <p>
* Note this computation can be ill-conditioned. Use with caution
* and only when it is necessary.
*
* @throws ArithmeticException if any abscissas coincide
*/
protected void computeCoefficients() throws ArithmeticException {
int i, j, n;
double c[], tc[], d, t;
n = degree() + 1;
coefficients = new double[n];
for (i = 0; i < n; i++) {
coefficients[i] = 0.0;
}
// c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
c = new double[n+1];
c[0] = 1.0;
for (i = 0; i < n; i++) {
for (j = i; j > 0; j--) {
c[j] = c[j-1] - c[j] * x[i];
}
c[0] *= (-x[i]);
c[i+1] = 1;
}
tc = new double[n];
for (i = 0; i < n; i++) {
// d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
d = 1;
for (j = 0; j < n; j++) {
if (i != j) {
d *= (x[i] - x[j]);
}
}
if (d == 0.0) {
// This happens only when two abscissas are identical.
throw new ArithmeticException
("Identical abscissas cause division by zero.");
}
t = y[i] / d;
// Lagrange polynomial is the sum of n terms, each of which is a
// polynomial of degree n-1. tc[] are the coefficients of the i-th
// numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
tc[n-1] = c[n]; // actually c[n] = 1
coefficients[n-1] += t * tc[n-1];
for (j = n-2; j >= 0; j--) {
tc[j] = c[j+1] + tc[j+1] * x[i];
coefficients[j] += t * tc[j];
}
}
coefficientsComputed = true;
}
/**
* Verifies that the interpolation arrays are valid.
* <p>
* The interpolating points must be distinct. However it is not
* verified here, it is checked in evaluate() and computeCoefficients().
*
* @throws IllegalArgumentException if not valid
* @see #evaluate(double[], double[], double)
* @see #computeCoefficients()
*/
protected static void verifyInterpolationArray(double x[], double y[]) throws
IllegalArgumentException {
if (x.length < 2 || y.length < 2) {
throw new IllegalArgumentException
("Interpolation requires at least two points.");
}
if (x.length != y.length) {
throw new IllegalArgumentException
("Abscissa and value arrays must have the same length.");
}
}
}

View File

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math;
import java.util.Locale;
import junit.framework.TestCase;
/**
* @version $Revision:$
*/
public class DuplicateSampleAbscissaExceptionTest extends TestCase {
public void testConstructor(){
DuplicateSampleAbscissaException ex = new DuplicateSampleAbscissaException(1.2, 10, 11);
assertNull(ex.getCause());
assertNotNull(ex.getMessage());
assertTrue(ex.getMessage().indexOf("1.2") > 0);
assertEquals(1.2, ex.getDuplicateAbscissa(), 0);
assertFalse(ex.getMessage().equals(ex.getMessage(Locale.FRENCH)));
}
}