Field-based Adams-Bashforth integrator.
This commit is contained in:
parent
dd9dc94577
commit
305934dfbd
|
@ -0,0 +1,374 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ode.nonstiff;
|
||||
|
||||
import org.apache.commons.math4.Field;
|
||||
import org.apache.commons.math4.RealFieldElement;
|
||||
import org.apache.commons.math4.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math4.exception.MaxCountExceededException;
|
||||
import org.apache.commons.math4.exception.NoBracketingException;
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
|
||||
import org.apache.commons.math4.linear.FieldMatrix;
|
||||
import org.apache.commons.math4.ode.FieldExpandableODE;
|
||||
import org.apache.commons.math4.ode.FieldODEState;
|
||||
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
|
||||
import org.apache.commons.math4.util.MathArrays;
|
||||
|
||||
|
||||
/**
|
||||
* This class implements explicit Adams-Bashforth integrators for Ordinary
|
||||
* Differential Equations.
|
||||
*
|
||||
* <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
|
||||
* multistep ODE solvers. This implementation is a variation of the classical
|
||||
* one: it uses adaptive stepsize to implement error control, whereas
|
||||
* classical implementations are fixed step size. The value of state vector
|
||||
* at step n+1 is a simple combination of the value at step n and of the
|
||||
* derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
|
||||
* steps one wants to use for computing the next value, different formulas
|
||||
* are available:</p>
|
||||
* <ul>
|
||||
* <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
|
||||
* <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
|
||||
* <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
|
||||
* <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
|
||||
* <li>...</li>
|
||||
* </ul>
|
||||
*
|
||||
* <p>A k-steps Adams-Bashforth method is of order k.</p>
|
||||
*
|
||||
* <h3>Implementation details</h3>
|
||||
*
|
||||
* <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
|
||||
* <pre>
|
||||
* s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
|
||||
* s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
|
||||
* s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
|
||||
* ...
|
||||
* s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
|
||||
* </pre></p>
|
||||
*
|
||||
* <p>The definitions above use the classical representation with several previous first
|
||||
* derivatives. Lets define
|
||||
* <pre>
|
||||
* q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
|
||||
* </pre>
|
||||
* (we omit the k index in the notation for clarity). With these definitions,
|
||||
* Adams-Bashforth methods can be written:
|
||||
* <ul>
|
||||
* <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
|
||||
* <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
|
||||
* <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
|
||||
* <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
|
||||
* <li>...</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
|
||||
* s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
|
||||
* higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
|
||||
* and r<sub>n</sub>) where r<sub>n</sub> is defined as:
|
||||
* <pre>
|
||||
* r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
|
||||
* </pre>
|
||||
* (here again we omit the k index in the notation for clarity)
|
||||
* </p>
|
||||
*
|
||||
* <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
|
||||
* computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
|
||||
* for degree k polynomials.
|
||||
* <pre>
|
||||
* s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + ∑<sub>j>0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
|
||||
* </pre>
|
||||
* The previous formula can be used with several values for i to compute the transform between
|
||||
* classical representation and Nordsieck vector. The transform between r<sub>n</sub>
|
||||
* and q<sub>n</sub> resulting from the Taylor series formulas above is:
|
||||
* <pre>
|
||||
* q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
|
||||
* </pre>
|
||||
* where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built
|
||||
* with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
|
||||
* the column number starting from 1:
|
||||
* <pre>
|
||||
* [ -2 3 -4 5 ... ]
|
||||
* [ -4 12 -32 80 ... ]
|
||||
* P = [ -6 27 -108 405 ... ]
|
||||
* [ -8 48 -256 1280 ... ]
|
||||
* [ ... ]
|
||||
* </pre></p>
|
||||
*
|
||||
* <p>Using the Nordsieck vector has several advantages:
|
||||
* <ul>
|
||||
* <li>it greatly simplifies step interpolation as the interpolator mainly applies
|
||||
* Taylor series formulas,</li>
|
||||
* <li>it simplifies step changes that occur when discrete events that truncate
|
||||
* the step are triggered,</li>
|
||||
* <li>it allows to extend the methods in order to support adaptive stepsize.</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
|
||||
* <ul>
|
||||
* <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
|
||||
* <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
|
||||
* <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
|
||||
* </ul>
|
||||
* where A is a rows shifting matrix (the lower left part is an identity matrix):
|
||||
* <pre>
|
||||
* [ 0 0 ... 0 0 | 0 ]
|
||||
* [ ---------------+---]
|
||||
* [ 1 0 ... 0 0 | 0 ]
|
||||
* A = [ 0 1 ... 0 0 | 0 ]
|
||||
* [ ... | 0 ]
|
||||
* [ 0 0 ... 1 0 | 0 ]
|
||||
* [ 0 0 ... 0 1 | 0 ]
|
||||
* </pre></p>
|
||||
*
|
||||
* <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
|
||||
* they only depend on k and therefore are precomputed once for all.</p>
|
||||
*
|
||||
* @param <T> the type of the field elements
|
||||
* @since 3.6
|
||||
*/
|
||||
public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extends AdamsFieldIntegrator<T> {
|
||||
|
||||
/** Integrator method name. */
|
||||
private static final String METHOD_NAME = "Adams-Bashforth";
|
||||
|
||||
/**
|
||||
* Build an Adams-Bashforth integrator with the given order and step control parameters.
|
||||
* @param field field to which the time and state vector elements belong
|
||||
* @param nSteps number of steps of the method excluding the one being computed
|
||||
* @param minStep minimal step (sign is irrelevant, regardless of
|
||||
* integration direction, forward or backward), the last step can
|
||||
* be smaller than this
|
||||
* @param maxStep maximal step (sign is irrelevant, regardless of
|
||||
* integration direction, forward or backward), the last step can
|
||||
* be smaller than this
|
||||
* @param scalAbsoluteTolerance allowed absolute error
|
||||
* @param scalRelativeTolerance allowed relative error
|
||||
* @exception NumberIsTooSmallException if order is 1 or less
|
||||
*/
|
||||
public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
|
||||
final double minStep, final double maxStep,
|
||||
final double scalAbsoluteTolerance,
|
||||
final double scalRelativeTolerance)
|
||||
throws NumberIsTooSmallException {
|
||||
super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
|
||||
scalAbsoluteTolerance, scalRelativeTolerance);
|
||||
}
|
||||
|
||||
/**
|
||||
* Build an Adams-Bashforth integrator with the given order and step control parameters.
|
||||
* @param field field to which the time and state vector elements belong
|
||||
* @param nSteps number of steps of the method excluding the one being computed
|
||||
* @param minStep minimal step (sign is irrelevant, regardless of
|
||||
* integration direction, forward or backward), the last step can
|
||||
* be smaller than this
|
||||
* @param maxStep maximal step (sign is irrelevant, regardless of
|
||||
* integration direction, forward or backward), the last step can
|
||||
* be smaller than this
|
||||
* @param vecAbsoluteTolerance allowed absolute error
|
||||
* @param vecRelativeTolerance allowed relative error
|
||||
* @exception IllegalArgumentException if order is 1 or less
|
||||
*/
|
||||
public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
|
||||
final double minStep, final double maxStep,
|
||||
final double[] vecAbsoluteTolerance,
|
||||
final double[] vecRelativeTolerance)
|
||||
throws IllegalArgumentException {
|
||||
super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
|
||||
vecAbsoluteTolerance, vecRelativeTolerance);
|
||||
}
|
||||
|
||||
/** Estimate error.
|
||||
* <p>
|
||||
* Error is estimated by interpolating back to previous state using
|
||||
* the state Taylor expansion and comparing to real previous state.
|
||||
* </p>
|
||||
* @param previousState state vector at step start
|
||||
* @param predictedState predicted state vector at step end
|
||||
* @param predictedScaled predicted value of the scaled derivatives at step end
|
||||
* @param predictedNordsieck predicted value of the Nordsieck vector at step end
|
||||
* @return estimated normalized local discretization error
|
||||
*/
|
||||
private T errorEstimation(final T[] previousState,
|
||||
final T[] predictedState,
|
||||
final T[] predictedScaled,
|
||||
final FieldMatrix<T> predictedNordsieck) {
|
||||
|
||||
T error = getField().getZero();
|
||||
for (int i = 0; i < mainSetDimension; ++i) {
|
||||
final T yScale = predictedState[i].abs();
|
||||
final T tol = (vecAbsoluteTolerance == null) ?
|
||||
yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
|
||||
yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
|
||||
|
||||
// apply Taylor formula from high order to low order,
|
||||
// for the sake of numerical accuracy
|
||||
T variation = getField().getZero();
|
||||
int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1;
|
||||
for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
|
||||
variation = variation.add(predictedNordsieck.getEntry(k, i).multiply(sign));
|
||||
sign = -sign;
|
||||
}
|
||||
variation = variation.subtract(predictedScaled[i]);
|
||||
|
||||
final T ratio = predictedState[i].subtract(previousState[i]).add(variation).divide(tol);
|
||||
error = error.add(ratio.multiply(ratio));
|
||||
|
||||
}
|
||||
|
||||
return error.divide(mainSetDimension).sqrt();
|
||||
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
|
||||
final FieldODEState<T> initialState,
|
||||
final T finalTime)
|
||||
throws NumberIsTooSmallException, DimensionMismatchException,
|
||||
MaxCountExceededException, NoBracketingException {
|
||||
|
||||
sanityChecks(initialState, finalTime);
|
||||
final T t0 = initialState.getTime();
|
||||
final T[] y = equations.getMapper().mapState(initialState);
|
||||
setStepStart(initIntegration(equations, t0, y, finalTime));
|
||||
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
|
||||
|
||||
// compute the initial Nordsieck vector using the configured starter integrator
|
||||
start(equations, getStepStart(), finalTime);
|
||||
|
||||
// reuse the step that was chosen by the starter integrator
|
||||
AdamsFieldStepInterpolator<T> interpolator =
|
||||
new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
|
||||
forward, equations.getMapper());
|
||||
|
||||
// main integration loop
|
||||
setIsLastStep(false);
|
||||
do {
|
||||
|
||||
T[] predictedY = null;
|
||||
final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
|
||||
Array2DRowFieldMatrix<T> predictedNordsieck = null;
|
||||
T error = getField().getZero().add(10);
|
||||
while (error.subtract(1.0).getReal() >= 0.0) {
|
||||
|
||||
// predict a first estimate of the state at step end
|
||||
final FieldODEStateAndDerivative<T> stepEnd = interpolator.getCurrentState();
|
||||
predictedY = stepEnd.getState();
|
||||
|
||||
// evaluate the derivative
|
||||
final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
|
||||
|
||||
// predict Nordsieck vector at step end
|
||||
for (int j = 0; j < predictedScaled.length; ++j) {
|
||||
predictedScaled[j] = getStepSize().multiply(yDot[j]);
|
||||
}
|
||||
predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
|
||||
updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
|
||||
|
||||
// evaluate error
|
||||
error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck);
|
||||
|
||||
if (error.subtract(1.0).getReal() >= 0.0) {
|
||||
// reject the step and attempt to reduce error by stepsize control
|
||||
final T factor = computeStepGrowShrinkFactor(error);
|
||||
rescale(filterStep(getStepSize().multiply(factor), forward, false));
|
||||
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
|
||||
forward, equations.getMapper());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// discrete events handling
|
||||
System.arraycopy(predictedY, 0, y, 0, y.length);
|
||||
setStepStart(acceptStep(interpolator, finalTime));
|
||||
scaled = predictedScaled;
|
||||
nordsieck = predictedNordsieck;
|
||||
|
||||
if (!isLastStep()) {
|
||||
|
||||
if (resetOccurred()) {
|
||||
// some events handler has triggered changes that
|
||||
// invalidate the derivatives, we need to restart from scratch
|
||||
start(equations, getStepStart(), finalTime);
|
||||
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
|
||||
forward, equations.getMapper());
|
||||
}
|
||||
|
||||
// stepsize control for next step
|
||||
final T factor = computeStepGrowShrinkFactor(error);
|
||||
final T scaledH = getStepSize().multiply(factor);
|
||||
final T nextT = getStepStart().getTime().add(scaledH);
|
||||
final boolean nextIsLast = forward ?
|
||||
nextT.subtract(finalTime).getReal() >= 0 :
|
||||
nextT.subtract(finalTime).getReal() <= 0;
|
||||
T hNew = filterStep(scaledH, forward, nextIsLast);
|
||||
|
||||
final T filteredNextT = getStepStart().getTime().add(hNew);
|
||||
final boolean filteredNextIsLast = forward ?
|
||||
filteredNextT.subtract(finalTime).getReal() >= 0 :
|
||||
filteredNextT.subtract(finalTime).getReal() <= 0;
|
||||
if (filteredNextIsLast) {
|
||||
hNew = finalTime.subtract(getStepStart().getTime());
|
||||
}
|
||||
|
||||
rescale(hNew);
|
||||
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
|
||||
forward, equations.getMapper());
|
||||
|
||||
}
|
||||
|
||||
} while (!isLastStep());
|
||||
|
||||
final FieldODEStateAndDerivative<T> finalState = getStepStart();
|
||||
setStepStart(null);
|
||||
setStepSize(null);
|
||||
return finalState;
|
||||
|
||||
}
|
||||
|
||||
/** Rescale the instance.
|
||||
* <p>Since the scaled and Nordsieck arrays are shared with the caller,
|
||||
* this method has the side effect of rescaling this arrays in the caller too.</p>
|
||||
* @param newStepSize new step size to use in the scaled and Nordsieck arrays
|
||||
*/
|
||||
public void rescale(final T newStepSize) {
|
||||
|
||||
final T ratio = newStepSize.divide(getStepSize());
|
||||
for (int i = 0; i < scaled.length; ++i) {
|
||||
scaled[i] = scaled[i].multiply(ratio);
|
||||
}
|
||||
|
||||
final T[][] nData = nordsieck.getDataRef();
|
||||
T power = ratio;
|
||||
for (int i = 0; i < nData.length; ++i) {
|
||||
power = power.multiply(ratio);
|
||||
final T[] nDataI = nData[i];
|
||||
for (int j = 0; j < nDataI.length; ++j) {
|
||||
nDataI[j] = nDataI[j].multiply(power);
|
||||
}
|
||||
}
|
||||
|
||||
setStepSize(newStepSize);
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ode.nonstiff;
|
||||
|
||||
|
||||
import org.apache.commons.math4.Field;
|
||||
import org.apache.commons.math4.RealFieldElement;
|
||||
import org.apache.commons.math4.exception.MathIllegalStateException;
|
||||
import org.apache.commons.math4.exception.MaxCountExceededException;
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.util.Decimal64Field;
|
||||
import org.junit.Test;
|
||||
|
||||
public class AdamsBashforthFieldIntegratorTest extends AbstractAdamsFieldIntegratorTest {
|
||||
|
||||
protected <T extends RealFieldElement<T>> AdamsFieldIntegrator<T>
|
||||
createIntegrator(Field<T> field, final int nSteps, final double minStep, final double maxStep,
|
||||
final double scalAbsoluteTolerance, final double scalRelativeTolerance) {
|
||||
return new AdamsBashforthFieldIntegrator<T>(field, nSteps, minStep, maxStep,
|
||||
scalAbsoluteTolerance, scalRelativeTolerance);
|
||||
}
|
||||
|
||||
protected <T extends RealFieldElement<T>> AdamsFieldIntegrator<T>
|
||||
createIntegrator(Field<T> field, final int nSteps, final double minStep, final double maxStep,
|
||||
final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) {
|
||||
return new AdamsBashforthFieldIntegrator<T>(field, nSteps, minStep, maxStep,
|
||||
vecAbsoluteTolerance, vecRelativeTolerance);
|
||||
}
|
||||
|
||||
@Test(expected=NumberIsTooSmallException.class)
|
||||
public void testMinStep() {
|
||||
doDimensionCheck(Decimal64Field.getInstance());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIncreasingTolerance() {
|
||||
// the 7 and 121 factors are only valid for this test
|
||||
// and has been obtained from trial and error
|
||||
// there are no general relationship between local and global errors
|
||||
doTestIncreasingTolerance(Decimal64Field.getInstance(), 7, 121);
|
||||
}
|
||||
|
||||
@Test(expected = MaxCountExceededException.class)
|
||||
public void exceedMaxEvaluations() {
|
||||
doExceedMaxEvaluations(Decimal64Field.getInstance());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void backward() {
|
||||
doBackward(Decimal64Field.getInstance(), 4.3e-8, 4.3e-8, 1.0e-16, "Adams-Bashforth");
|
||||
}
|
||||
|
||||
@Test
|
||||
public void polynomial() {
|
||||
doPolynomial(Decimal64Field.getInstance(), 5, 0.004, 6.0e-10);
|
||||
}
|
||||
|
||||
@Test(expected=MathIllegalStateException.class)
|
||||
public void testStartFailure() {
|
||||
doTestStartFailure(Decimal64Field.getInstance());
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue