Improved efficiency.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141234 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
092b61c11f
commit
384e07ad45
|
@ -39,7 +39,7 @@ import java.io.Serializable;
|
||||||
* The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
|
* The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
|
||||||
* <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
|
* <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
|
||||||
*
|
*
|
||||||
* @version $Revision: 1.16 $ $Date: 2004/04/27 04:37:58 $
|
* @version $Revision: 1.17 $ $Date: 2004/05/22 19:59:22 $
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class SplineInterpolator implements UnivariateRealInterpolator, Serializable {
|
public class SplineInterpolator implements UnivariateRealInterpolator, Serializable {
|
||||||
|
@ -69,27 +69,22 @@ public class SplineInterpolator implements UnivariateRealInterpolator, Serializa
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Differences between knot points
|
||||||
double h[] = new double[n];
|
double h[] = new double[n];
|
||||||
for (int i = 0; i < n; i++) {
|
for (int i = 0; i < n; i++) {
|
||||||
h[i] = x[i + 1] - x[i];
|
h[i] = x[i + 1] - x[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
double alpha[] = new double[n];
|
|
||||||
for (int i = 1; i < n; i++) {
|
|
||||||
alpha[i] = 3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
|
|
||||||
(h[i - 1] * h[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
double l[] = new double[n + 1];
|
|
||||||
double mu[] = new double[n];
|
double mu[] = new double[n];
|
||||||
double z[] = new double[n + 1];
|
double z[] = new double[n + 1];
|
||||||
l[0] = 1d;
|
|
||||||
mu[0] = 0d;
|
mu[0] = 0d;
|
||||||
z[0] = 0d;
|
z[0] = 0d;
|
||||||
|
double g = 0;
|
||||||
for (int i = 1; i < n; i++) {
|
for (int i = 1; i < n; i++) {
|
||||||
l[i] = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1];
|
g = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1];
|
||||||
mu[i] = h[i] / l[i];
|
mu[i] = h[i] / g;
|
||||||
z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i];
|
z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
|
||||||
|
(h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
|
||||||
}
|
}
|
||||||
|
|
||||||
// cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
|
// cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
|
||||||
|
@ -97,7 +92,6 @@ public class SplineInterpolator implements UnivariateRealInterpolator, Serializa
|
||||||
double c[] = new double[n + 1];
|
double c[] = new double[n + 1];
|
||||||
double d[] = new double[n];
|
double d[] = new double[n];
|
||||||
|
|
||||||
l[n] = 1d;
|
|
||||||
z[n] = 0d;
|
z[n] = 0d;
|
||||||
c[n] = 0d;
|
c[n] = 0d;
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue