[MATH-1031] Added new ClusterEvaluation base class and refactored code in MultiKMeansPlusPlusClusterer.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1542545 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2013-11-16 18:48:48 +00:00
parent 65646ba8bd
commit 3a45bc5b6d
6 changed files with 328 additions and 18 deletions

View File

@ -51,6 +51,11 @@ If the output is not quite correct, check for invisible trailing spaces!
</properties> </properties>
<body> <body>
<release version="3.3" date="TBD" description="TBD"> <release version="3.3" date="TBD" description="TBD">
<action dev="tn" type="update" issue="MATH-1031" due-to="Thorsten Schäfer">
Added new class "ClusterEvaluator" to evaluate the result of a clustering algorithm
and refactored existing evaluation code in "MultiKMeansPlusPlusClusterer"
into separate class "SumOfClusterVariances".
</action>
<action dev="psteitz" type="add" issue="MATH-1061"> <action dev="psteitz" type="add" issue="MATH-1061">
Added InsufficientDataException. Added InsufficientDataException.
</action> </action>
@ -96,7 +101,7 @@ If the output is not quite correct, check for invisible trailing spaces!
Added logDensity methods to AbstractReal/IntegerDistribution with naive default Added logDensity methods to AbstractReal/IntegerDistribution with naive default
implementations and improved implementations for some current distributions. implementations and improved implementations for some current distributions.
</action> </action>
<action dev="psteitz" type="add" issue="MATH-1038" due-to="Thorsten Schaefer"> <action dev="psteitz" type="add" issue="MATH-1038" due-to="Thorsten Schäfer">
Added ConfidenceInterval class and BinomialConfidenceInterval providing several Added ConfidenceInterval class and BinomialConfidenceInterval providing several
estimators for confidence intervals for binomial probabilities. estimators for confidence intervals for binomial probabilities.
</action> </action>
@ -127,7 +132,7 @@ If the output is not quite correct, check for invisible trailing spaces!
Fix a typo in the test class of "GeometricDistribution" and ensure that a meaningful Fix a typo in the test class of "GeometricDistribution" and ensure that a meaningful
tolerance value is used when comparing test results with expected values. tolerance value is used when comparing test results with expected values.
</action> </action>
<action dev="psteitz" type="add" issue="MATH-1034" due-to="Thorsten Schaefer"> <action dev="psteitz" type="add" issue="MATH-1034" due-to="Thorsten Schäfer">
Added exact binomial test implementation. Added exact binomial test implementation.
</action> </action>
<action dev="tn" type="add" issue="MATH-1018" due-to="Ajo Fod"> <action dev="tn" type="add" issue="MATH-1018" due-to="Ajo Fod">

View File

@ -22,7 +22,8 @@ import java.util.List;
import org.apache.commons.math3.exception.ConvergenceException; import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.stat.descriptive.moment.Variance; import org.apache.commons.math3.ml.clustering.evaluation.ClusterEvaluator;
import org.apache.commons.math3.ml.clustering.evaluation.SumOfClusterVariances;
/** /**
* A wrapper around a k-means++ clustering algorithm which performs multiple trials * A wrapper around a k-means++ clustering algorithm which performs multiple trials
@ -39,15 +40,31 @@ public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Cluster
/** The number of trial runs. */ /** The number of trial runs. */
private final int numTrials; private final int numTrials;
/** The cluster evaluator to use. */
private final ClusterEvaluator<T> evaluator;
/** Build a clusterer. /** Build a clusterer.
* @param clusterer the k-means clusterer to use * @param clusterer the k-means clusterer to use
* @param numTrials number of trial runs * @param numTrials number of trial runs
*/ */
public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer, public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer,
final int numTrials) { final int numTrials) {
this(clusterer, numTrials, new SumOfClusterVariances<T>(clusterer.getDistanceMeasure()));
}
/** Build a clusterer.
* @param clusterer the k-means clusterer to use
* @param numTrials number of trial runs
* @param evaluator the cluster evaluator to use
* @since 3.3
*/
public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer,
final int numTrials,
final ClusterEvaluator<T> evaluator) {
super(clusterer.getDistanceMeasure()); super(clusterer.getDistanceMeasure());
this.clusterer = clusterer; this.clusterer = clusterer;
this.numTrials = numTrials; this.numTrials = numTrials;
this.evaluator = evaluator;
} }
/** /**
@ -66,6 +83,15 @@ public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Cluster
return numTrials; return numTrials;
} }
/**
* Returns the {@link ClusterEvaluator} used to determine the "best" clustering.
* @return the used {@link ClusterEvaluator}
* @since 3.3
*/
public ClusterEvaluator<T> getClusterEvaluator() {
return evaluator;
}
/** /**
* Runs the K-means++ clustering algorithm. * Runs the K-means++ clustering algorithm.
* *
@ -92,22 +118,9 @@ public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Cluster
List<CentroidCluster<T>> clusters = clusterer.cluster(points); List<CentroidCluster<T>> clusters = clusterer.cluster(points);
// compute the variance of the current list // compute the variance of the current list
double varianceSum = 0.0; final double varianceSum = evaluator.score(clusters);
for (final CentroidCluster<T> cluster : clusters) {
if (!cluster.getPoints().isEmpty()) {
// compute the distance variance of the current cluster if (evaluator.isBetterScore(varianceSum, bestVarianceSum)) {
final Clusterable center = cluster.getCenter();
final Variance stat = new Variance();
for (final T point : cluster.getPoints()) {
stat.increment(distance(point, center));
}
varianceSum += stat.getResult();
}
}
if (varianceSum <= bestVarianceSum) {
// this one is the best we have found so far, remember it // this one is the best we have found so far, remember it
best = clusters; best = clusters;
bestVarianceSum = varianceSum; bestVarianceSum = varianceSum;

View File

@ -0,0 +1,123 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ml.clustering.evaluation;
import java.util.List;
import org.apache.commons.math3.ml.clustering.CentroidCluster;
import org.apache.commons.math3.ml.clustering.Cluster;
import org.apache.commons.math3.ml.clustering.Clusterable;
import org.apache.commons.math3.ml.clustering.DoublePoint;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.ml.distance.EuclideanDistance;
/**
* Base class for cluster evaluation methods.
*
* @param <T> type of the clustered points
* @version $Id$
* @since 3.3
*/
public abstract class ClusterEvaluator<T extends Clusterable> {
/** The distance measure to use when evaluating the cluster. */
private final DistanceMeasure measure;
/**
* Creates a new cluster evaluator with an {@link EuclideanDistance}
* as distance measure.
*/
public ClusterEvaluator() {
this(new EuclideanDistance());
}
/**
* Creates a new cluster evaluator with the given distance measure.
* @param measure the distance measure to use
*/
public ClusterEvaluator(final DistanceMeasure measure) {
this.measure = measure;
}
/**
* Computes the evaluation score for the given list of clusters.
* @param clusters the clusters to evaluate
* @return the computed score
*/
public abstract double score(List<? extends Cluster<T>> clusters);
/**
* Returns whether the first evaluation score is considered to be better
* than the second one by this evaluator.
* <p>
* Specific implementations shall override this method if the returned scores
* do not follow the same ordering, i.e. smaller score is better.
*
* @param score1 the first score
* @param score2 the second score
* @return {@code true} if the first score is considered to be better, {@code false} otherwise
*/
public boolean isBetterScore(double score1, double score2) {
return score1 < score2;
}
/**
* Calculates the distance between two {@link Clusterable} instances
* with the configured {@link DistanceMeasure}.
*
* @param p1 the first clusterable
* @param p2 the second clusterable
* @return the distance between the two clusterables
*/
protected double distance(final Clusterable p1, final Clusterable p2) {
return measure.compute(p1.getPoint(), p2.getPoint());
}
/**
* Computes the centroid for a cluster.
*
* @param cluster the cluster
* @return the computed centroid for the cluster,
* or {@code null} if the cluster does not contain any points
*/
protected Clusterable centroidOf(final Cluster<T> cluster) {
final List<T> points = cluster.getPoints();
if (points.isEmpty()) {
return null;
}
// in case the cluster is of type CentroidCluster, no need to compute the centroid
if (cluster instanceof CentroidCluster) {
return ((CentroidCluster<T>) cluster).getCenter();
}
final int dimension = points.get(0).getPoint().length;
final double[] centroid = new double[dimension];
for (final T p : points) {
final double[] point = p.getPoint();
for (int i = 0; i < centroid.length; i++) {
centroid[i] += point[i];
}
}
for (int i = 0; i < centroid.length; i++) {
centroid[i] /= points.size();
}
return new DoublePoint(centroid);
}
}

View File

@ -0,0 +1,69 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ml.clustering.evaluation;
import java.util.List;
import org.apache.commons.math3.ml.clustering.Cluster;
import org.apache.commons.math3.ml.clustering.Clusterable;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.stat.descriptive.moment.Variance;
/**
* Computes the sum of intra-cluster distance variances according to the formula:
* <pre>
* \( score = \sum\limits_{i=1}^n \sigma_i^2 \)
* </pre>
* where n is the number of clusters and \( \sigma_i^2 \) is the variance of
* intra-cluster distances of cluster \( c_i \).
*
* @param <T> the type of the clustered points
* @version $Id$
* @since 3.3
*/
public class SumOfClusterVariances<T extends Clusterable> extends ClusterEvaluator<T> {
/**
*
* @param measure the distance measure to use
*/
public SumOfClusterVariances(final DistanceMeasure measure) {
super(measure);
}
@Override
public double score(final List<? extends Cluster<T>> clusters) {
double varianceSum = 0.0;
for (final Cluster<T> cluster : clusters) {
if (!cluster.getPoints().isEmpty()) {
final Clusterable center = centroidOf(cluster);
// compute the distance variance of the current cluster
final Variance stat = new Variance();
for (final T point : cluster.getPoints()) {
stat.increment(distance(point, center));
}
varianceSum += stat.getResult();
}
}
return varianceSum;
}
}

View File

@ -0,0 +1,20 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Cluster evaluation methods.
*/
package org.apache.commons.math3.ml.clustering.evaluation;

View File

@ -0,0 +1,80 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ml.clustering.evaluation;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.ml.clustering.Cluster;
import org.apache.commons.math3.ml.clustering.DoublePoint;
import org.apache.commons.math3.ml.distance.EuclideanDistance;
import org.junit.Before;
import org.junit.Test;
public class SumOfClusterVariancesTest {
private ClusterEvaluator<DoublePoint> evaluator;
@Before
public void setUp() {
evaluator = new SumOfClusterVariances<DoublePoint>(new EuclideanDistance());
}
@Test
public void testScore() {
final DoublePoint[] points1 = new DoublePoint[] {
new DoublePoint(new double[] { 1 }),
new DoublePoint(new double[] { 2 }),
new DoublePoint(new double[] { 3 })
};
final DoublePoint[] points2 = new DoublePoint[] {
new DoublePoint(new double[] { 1 }),
new DoublePoint(new double[] { 5 }),
new DoublePoint(new double[] { 10 })
};
final List<Cluster<DoublePoint>> clusters = new ArrayList<Cluster<DoublePoint>>();
final Cluster<DoublePoint> cluster1 = new Cluster<DoublePoint>();
for (DoublePoint p : points1) {
cluster1.addPoint(p);
}
clusters.add(cluster1);
assertEquals(1.0/3.0, evaluator.score(clusters), 1e-6);
final Cluster<DoublePoint> cluster2 = new Cluster<DoublePoint>();
for (DoublePoint p : points2) {
cluster2.addPoint(p);
}
clusters.add(cluster2);
assertEquals(6.148148148, evaluator.score(clusters), 1e-6);
}
@Test
public void testOrdering() {
assertTrue(evaluator.isBetterScore(10, 20));
assertFalse(evaluator.isBetterScore(20, 1));
}
}