Finished moving methods from MathUtils to ArithmeticsUtils (MATH-689)

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1182658 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-10-13 05:29:28 +00:00
parent d8866aedf4
commit 6a5fe463ea
10 changed files with 880 additions and 883 deletions

View File

@ -22,8 +22,8 @@ import java.util.List;
import java.util.Map;
import org.apache.commons.math.fraction.BigFraction;
import org.apache.commons.math.util.ArithmeticsUtils;
import org.apache.commons.math.util.FastMath;
import org.apache.commons.math.util.MathUtils;
/**
* A collection of static methods that operate on or return polynomials.
@ -326,7 +326,7 @@ public class PolynomialsUtils {
final int[][] coeff = new int[dp1][dp1];
for (int i = 0; i < dp1; i++){
for(int j = 0; j <= i; j++){
coeff[i][j] = (int) MathUtils.binomialCoefficient(i, j);
coeff[i][j] = (int) ArithmeticsUtils.binomialCoefficient(i, j);
}
}

View File

@ -23,7 +23,7 @@ import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.exception.NumberIsTooLargeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.ArithmeticsUtils;
import org.apache.commons.math.util.FastMath;
/**
@ -231,9 +231,9 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
* @return PMF for the distribution.
*/
private double probability(int n, int m, int k, int x) {
return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) +
MathUtils.binomialCoefficientLog(n - m, k - x) -
MathUtils.binomialCoefficientLog(n, k));
return FastMath.exp(ArithmeticsUtils.binomialCoefficientLog(m, x) +
ArithmeticsUtils.binomialCoefficientLog(n - m, k - x) -
ArithmeticsUtils.binomialCoefficientLog(n, k));
}
/**

View File

@ -22,7 +22,7 @@ import org.apache.commons.math.exception.OutOfRangeException;
import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Beta;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.ArithmeticsUtils;
import org.apache.commons.math.util.FastMath;
/**
@ -128,7 +128,7 @@ public class PascalDistributionImpl extends AbstractIntegerDistribution
if (x < 0) {
ret = 0.0;
} else {
ret = MathUtils.binomialCoefficientDouble(x +
ret = ArithmeticsUtils.binomialCoefficientDouble(x +
numberOfSuccesses - 1, numberOfSuccesses - 1) *
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
FastMath.pow(1.0 - probabilityOfSuccess, x);

View File

@ -24,7 +24,6 @@ import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.exception.MathArithmeticException;
import org.apache.commons.math.exception.NullArgumentException;
import org.apache.commons.math.util.ArithmeticsUtils;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;
/**
@ -490,12 +489,12 @@ public class Fraction
int d1 = ArithmeticsUtils.gcd(denominator, fraction.denominator);
if (d1==1) {
// result is ( (u*v' +/- u'v) / u'v')
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
int uvp = ArithmeticsUtils.mulAndCheck(numerator, fraction.denominator);
int upv = ArithmeticsUtils.mulAndCheck(fraction.numerator, denominator);
return new Fraction
(isAdd ? ArithmeticsUtils.addAndCheck(uvp, upv) :
ArithmeticsUtils.subAndCheck(uvp, upv),
MathUtils.mulAndCheck(denominator, fraction.denominator));
ArithmeticsUtils.mulAndCheck(denominator, fraction.denominator));
}
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
// exercise 7. we're going to use a BigInteger.
@ -517,7 +516,7 @@ public class Fraction
w);
}
return new Fraction (w.intValue(),
MathUtils.mulAndCheck(denominator/d1,
ArithmeticsUtils.mulAndCheck(denominator/d1,
fraction.denominator/d2));
}
@ -543,8 +542,8 @@ public class Fraction
int d1 = ArithmeticsUtils.gcd(numerator, fraction.denominator);
int d2 = ArithmeticsUtils.gcd(fraction.numerator, denominator);
return getReducedFraction
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
(ArithmeticsUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
ArithmeticsUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
}
/**

View File

@ -18,6 +18,7 @@ package org.apache.commons.math.util;
import org.apache.commons.math.exception.MathArithmeticException;
import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.NumberIsTooLargeException;
import org.apache.commons.math.exception.util.Localizable;
import org.apache.commons.math.exception.util.LocalizedFormats;
@ -77,92 +78,193 @@ public final class ArithmeticsUtils {
}
/**
* Add two long integers, checking for overflow.
* Returns an exact representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* <li> The result is small enough to fit into a {@code long}. The
* largest value of {@code n} for which all coefficients are
* {@code < Long.MAX_VALUE} is 66. If the computed value exceeds
* {@code Long.MAX_VALUE} an {@code ArithMeticException} is
* thrown.</li>
* </ul></p>
*
* @param a Addend.
* @param b Addend.
* @param pattern Pattern to use for any thrown exception.
* @return the sum {@code a + b}.
* @throws MathArithmeticException if the result cannot be represented
* as a {@code long}.
* @since 1.2
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws MathIllegalArgumentException if preconditions are not met.
* @throws MathArithmeticException if the result is too large to be
* represented by a long integer.
*/
private static long addAndCheck(long a, long b, Localizable pattern) {
long ret;
if (a > b) {
// use symmetry to reduce boundary cases
ret = addAndCheck(b, a, pattern);
public static long binomialCoefficient(final int n, final int k) {
ArithmeticsUtils.checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
// Use symmetry for large k
if (k > n / 2) {
return binomialCoefficient(n, n - k);
}
// We use the formula
// (n choose k) = n! / (n-k)! / k!
// (n choose k) == ((n-k+1)*...*n) / (1*...*k)
// which could be written
// (n choose k) == (n-1 choose k-1) * n / k
long result = 1;
if (n <= 61) {
// For n <= 61, the naive implementation cannot overflow.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
result = result * i / j;
i++;
}
} else if (n <= 66) {
// For n > 61 but n <= 66, the result cannot overflow,
// but we must take care not to overflow intermediate values.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
// We know that (result * i) is divisible by j,
// but (result * i) may overflow, so we split j:
// Filter out the gcd, d, so j/d and i/d are integer.
// result is divisible by (j/d) because (j/d)
// is relative prime to (i/d) and is a divisor of
// result * (i/d).
final long d = gcd(i, j);
result = (result / (j / d)) * (i / d);
i++;
}
} else {
// assert a <= b
if (a < 0) {
if (b < 0) {
// check for negative overflow
if (Long.MIN_VALUE - b <= a) {
ret = a + b;
} else {
throw new MathArithmeticException(pattern, a, b);
}
} else {
// opposite sign addition is always safe
ret = a + b;
}
} else {
// assert a >= 0
// assert b >= 0
// check for positive overflow
if (a <= Long.MAX_VALUE - b) {
ret = a + b;
} else {
throw new MathArithmeticException(pattern, a, b);
}
// For n > 66, a result overflow might occur, so we check
// the multiplication, taking care to not overflow
// unnecessary.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
final long d = gcd(i, j);
result = mulAndCheck(result / (j / d), i / d);
i++;
}
}
return ret;
return result;
}
/**
* Subtract two integers, checking for overflow.
* Returns a {@code double} representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* <li> The result is small enough to fit into a {@code double}. The
* largest value of {@code n} for which all coefficients are <
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
* Double.POSITIVE_INFINITY is returned</li>
* </ul></p>
*
* @param x Minuend.
* @param y Subtrahend.
* @return the difference {@code x - y}.
* @throws MathArithmeticException if the result can not be represented
* as an {@code int}.
* @since 1.1
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws IllegalArgumentException if preconditions are not met.
*/
public static int subAndCheck(int x, int y) {
long s = (long)x - (long)y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
public static double binomialCoefficientDouble(final int n, final int k) {
ArithmeticsUtils.checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1d;
}
return (int)s;
if ((k == 1) || (k == n - 1)) {
return n;
}
if (k > n/2) {
return binomialCoefficientDouble(n, n - k);
}
if (n < 67) {
return binomialCoefficient(n,k);
}
double result = 1d;
for (int i = 1; i <= k; i++) {
result *= (double)(n - k + i) / (double)i;
}
return FastMath.floor(result + 0.5);
}
/**
* Subtract two long integers, checking for overflow.
* Returns the natural {@code log} of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* </ul></p>
*
* @param a Value.
* @param b Value.
* @return the difference {@code a - b}.
* @throws MathArithmeticException if the result can not be represented as a
* {@code long}.
* @since 1.2
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws IllegalArgumentException if preconditions are not met.
*/
public static long subAndCheck(long a, long b) {
long ret;
if (b == Long.MIN_VALUE) {
if (a < 0) {
ret = a - b;
} else {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b);
}
} else {
// use additive inverse
ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
public static double binomialCoefficientLog(final int n, final int k) {
ArithmeticsUtils.checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 0;
}
return ret;
if ((k == 1) || (k == n - 1)) {
return FastMath.log(n);
}
/*
* For values small enough to do exact integer computation,
* return the log of the exact value
*/
if (n < 67) {
return FastMath.log(binomialCoefficient(n,k));
}
/*
* Return the log of binomialCoefficientDouble for values that will not
* overflow binomialCoefficientDouble
*/
if (n < 1030) {
return FastMath.log(binomialCoefficientDouble(n, k));
}
if (k > n / 2) {
return binomialCoefficientLog(n, n - k);
}
/*
* Sum logs for values that could overflow
*/
double logSum = 0;
// n!/(n-k)!
for (int i = n - k + 1; i <= n; i++) {
logSum += FastMath.log(i);
}
// divide by k!
for (int i = 2; i <= k; i++) {
logSum -= FastMath.log(i);
}
return logSum;
}
/**
@ -419,4 +521,251 @@ public final class ArithmeticsUtils {
} while (t != 0);
return -u * (1L << k); // gcd is u*2^k
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
* </p>
* Special cases:
* <ul>
* <li>The invocations {@code lcm(Integer.MIN_VALUE, n)} and
* {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^31, which is too large for an int value.</li>
* <li>The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is
* {@code 0} for any {@code x}.
* </ul>
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws MathArithmeticException if the result cannot be represented as
* a non-negative {@code int} value.
* @since 1.1
*/
public static int lcm(int a, int b) {
if (a == 0 || b == 0){
return 0;
}
int lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b));
if (lcm == Integer.MIN_VALUE) {
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS,
a, b);
}
return lcm;
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
* </p>
* Special cases:
* <ul>
* <li>The invocations {@code lcm(Long.MIN_VALUE, n)} and
* {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^63, which is too large for an int value.</li>
* <li>The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is
* {@code 0L} for any {@code x}.
* </ul>
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws MathArithmeticException if the result cannot be represented
* as a non-negative {@code long} value.
* @since 2.1
*/
public static long lcm(long a, long b) {
if (a == 0 || b == 0){
return 0;
}
long lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b));
if (lcm == Long.MIN_VALUE){
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS,
a, b);
}
return lcm;
}
/**
* Multiply two integers, checking for overflow.
*
* @param x Factor.
* @param y Factor.
* @return the product {@code x * y}.
* @throws MathArithmeticException if the result can not be
* represented as an {@code int}.
* @since 1.1
*/
public static int mulAndCheck(int x, int y) {
long m = ((long)x) * ((long)y);
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
throw new MathArithmeticException();
}
return (int)m;
}
/**
* Multiply two long integers, checking for overflow.
*
* @param a Factor.
* @param b Factor.
* @return the product {@code a * b}.
* @throws MathArithmeticException if the result can not be represented
* as a {@code long}.
* @since 1.2
*/
public static long mulAndCheck(long a, long b) {
long ret;
if (a > b) {
// use symmetry to reduce boundary cases
ret = mulAndCheck(b, a);
} else {
if (a < 0) {
if (b < 0) {
// check for positive overflow with negative a, negative b
if (a >= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else if (b > 0) {
// check for negative overflow with negative a, positive b
if (Long.MIN_VALUE / b <= a) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else {
// assert b == 0
ret = 0;
}
} else if (a > 0) {
// assert a > 0
// assert b > 0
// check for positive overflow with positive a, positive b
if (a <= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else {
// assert a == 0
ret = 0;
}
}
return ret;
}
/**
* Subtract two integers, checking for overflow.
*
* @param x Minuend.
* @param y Subtrahend.
* @return the difference {@code x - y}.
* @throws MathArithmeticException if the result can not be represented
* as an {@code int}.
* @since 1.1
*/
public static int subAndCheck(int x, int y) {
long s = (long)x - (long)y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
}
return (int)s;
}
/**
* Subtract two long integers, checking for overflow.
*
* @param a Value.
* @param b Value.
* @return the difference {@code a - b}.
* @throws MathArithmeticException if the result can not be represented as a
* {@code long}.
* @since 1.2
*/
public static long subAndCheck(long a, long b) {
long ret;
if (b == Long.MIN_VALUE) {
if (a < 0) {
ret = a - b;
} else {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b);
}
} else {
// use additive inverse
ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
}
return ret;
}
/**
* Add two long integers, checking for overflow.
*
* @param a Addend.
* @param b Addend.
* @param pattern Pattern to use for any thrown exception.
* @return the sum {@code a + b}.
* @throws MathArithmeticException if the result cannot be represented
* as a {@code long}.
* @since 1.2
*/
private static long addAndCheck(long a, long b, Localizable pattern) {
long ret;
if (a > b) {
// use symmetry to reduce boundary cases
ret = addAndCheck(b, a, pattern);
} else {
// assert a <= b
if (a < 0) {
if (b < 0) {
// check for negative overflow
if (Long.MIN_VALUE - b <= a) {
ret = a + b;
} else {
throw new MathArithmeticException(pattern, a, b);
}
} else {
// opposite sign addition is always safe
ret = a + b;
}
} else {
// assert a >= 0
// assert b >= 0
// check for positive overflow
if (a <= Long.MAX_VALUE - b) {
ret = a + b;
} else {
throw new MathArithmeticException(pattern, a, b);
}
}
}
return ret;
}
/**
* Check binomial preconditions.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @throws NotPositiveException if {@code n < 0}.
* @throws NumberIsTooLargeException if {@code k > n}.
*/
private static void checkBinomial(final int n, final int k) {
if (n < k) {
throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
k, n, true);
}
if (n < 0) {
throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n);
}
}
}

View File

@ -26,7 +26,6 @@ import org.apache.commons.math.exception.MathIllegalArgumentException;
import org.apache.commons.math.exception.NotFiniteNumberException;
import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.NullArgumentException;
import org.apache.commons.math.exception.NumberIsTooLargeException;
import org.apache.commons.math.exception.util.Localizable;
import org.apache.commons.math.exception.util.LocalizedFormats;
@ -76,214 +75,6 @@ public final class MathUtils {
super();
}
/**
* Returns an exact representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* <li> The result is small enough to fit into a {@code long}. The
* largest value of {@code n} for which all coefficients are
* {@code < Long.MAX_VALUE} is 66. If the computed value exceeds
* {@code Long.MAX_VALUE} an {@code ArithMeticException} is
* thrown.</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws MathIllegalArgumentException if preconditions are not met.
* @throws MathArithmeticException if the result is too large to be
* represented by a long integer.
*/
public static long binomialCoefficient(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
// Use symmetry for large k
if (k > n / 2) {
return binomialCoefficient(n, n - k);
}
// We use the formula
// (n choose k) = n! / (n-k)! / k!
// (n choose k) == ((n-k+1)*...*n) / (1*...*k)
// which could be written
// (n choose k) == (n-1 choose k-1) * n / k
long result = 1;
if (n <= 61) {
// For n <= 61, the naive implementation cannot overflow.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
result = result * i / j;
i++;
}
} else if (n <= 66) {
// For n > 61 but n <= 66, the result cannot overflow,
// but we must take care not to overflow intermediate values.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
// We know that (result * i) is divisible by j,
// but (result * i) may overflow, so we split j:
// Filter out the gcd, d, so j/d and i/d are integer.
// result is divisible by (j/d) because (j/d)
// is relative prime to (i/d) and is a divisor of
// result * (i/d).
final long d = ArithmeticsUtils.gcd(i, j);
result = (result / (j / d)) * (i / d);
i++;
}
} else {
// For n > 66, a result overflow might occur, so we check
// the multiplication, taking care to not overflow
// unnecessary.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
final long d = ArithmeticsUtils.gcd(i, j);
result = mulAndCheck(result / (j / d), i / d);
i++;
}
}
return result;
}
/**
* Returns a {@code double} representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* <li> The result is small enough to fit into a {@code double}. The
* largest value of {@code n} for which all coefficients are <
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
* Double.POSITIVE_INFINITY is returned</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double binomialCoefficientDouble(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1d;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
if (k > n/2) {
return binomialCoefficientDouble(n, n - k);
}
if (n < 67) {
return binomialCoefficient(n,k);
}
double result = 1d;
for (int i = 1; i <= k; i++) {
result *= (double)(n - k + i) / (double)i;
}
return FastMath.floor(result + 0.5);
}
/**
* Returns the natural {@code log} of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "{@code n choose k}", the number of
* {@code k}-element subsets that can be selected from an
* {@code n}-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return {@code n choose k}
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double binomialCoefficientLog(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 0;
}
if ((k == 1) || (k == n - 1)) {
return FastMath.log(n);
}
/*
* For values small enough to do exact integer computation,
* return the log of the exact value
*/
if (n < 67) {
return FastMath.log(binomialCoefficient(n,k));
}
/*
* Return the log of binomialCoefficientDouble for values that will not
* overflow binomialCoefficientDouble
*/
if (n < 1030) {
return FastMath.log(binomialCoefficientDouble(n, k));
}
if (k > n / 2) {
return binomialCoefficientLog(n, n - k);
}
/*
* Sum logs for values that could overflow
*/
double logSum = 0;
// n!/(n-k)!
for (int i = n - k + 1; i <= n; i++) {
logSum += FastMath.log(i);
}
// divide by k!
for (int i = 2; i <= k; i++) {
logSum -= FastMath.log(i);
}
return logSum;
}
/**
* Check binomial preconditions.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @throws NotPositiveException if {@code n < 0}.
* @throws NumberIsTooLargeException if {@code k > n}.
*/
private static void checkBinomial(final int n, final int k) {
if (n < k) {
throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
k, n, true);
}
if (n < 0) {
throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n);
}
}
/**
* Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
* hyperbolic cosine</a> of x.
@ -387,74 +178,6 @@ public final class MathUtils {
return (x >= ZS) ? PS : NS;
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
* </p>
* Special cases:
* <ul>
* <li>The invocations {@code lcm(Integer.MIN_VALUE, n)} and
* {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^31, which is too large for an int value.</li>
* <li>The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is
* {@code 0} for any {@code x}.
* </ul>
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws MathArithmeticException if the result cannot be represented as
* a non-negative {@code int} value.
* @since 1.1
*/
public static int lcm(int a, int b) {
if (a == 0 || b == 0){
return 0;
}
int lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b));
if (lcm == Integer.MIN_VALUE) {
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS,
a, b);
}
return lcm;
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
* </p>
* Special cases:
* <ul>
* <li>The invocations {@code lcm(Long.MIN_VALUE, n)} and
* {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^63, which is too large for an int value.</li>
* <li>The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is
* {@code 0L} for any {@code x}.
* </ul>
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws MathArithmeticException if the result cannot be represented
* as a non-negative {@code long} value.
* @since 2.1
*/
public static long lcm(long a, long b) {
if (a == 0 || b == 0){
return 0;
}
long lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b));
if (lcm == Long.MIN_VALUE){
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS,
a, b);
}
return lcm;
}
/**
* <p>Returns the
* <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
@ -475,78 +198,6 @@ public final class MathUtils {
return FastMath.log(x)/FastMath.log(base);
}
/**
* Multiply two integers, checking for overflow.
*
* @param x Factor.
* @param y Factor.
* @return the product {@code x * y}.
* @throws MathArithmeticException if the result can not be
* represented as an {@code int}.
* @since 1.1
*/
public static int mulAndCheck(int x, int y) {
long m = ((long)x) * ((long)y);
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
throw new MathArithmeticException();
}
return (int)m;
}
/**
* Multiply two long integers, checking for overflow.
*
* @param a Factor.
* @param b Factor.
* @return the product {@code a * b}.
* @throws MathArithmeticException if the result can not be represented
* as a {@code long}.
* @since 1.2
*/
public static long mulAndCheck(long a, long b) {
long ret;
if (a > b) {
// use symmetry to reduce boundary cases
ret = mulAndCheck(b, a);
} else {
if (a < 0) {
if (b < 0) {
// check for positive overflow with negative a, negative b
if (a >= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else if (b > 0) {
// check for negative overflow with negative a, positive b
if (Long.MIN_VALUE / b <= a) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else {
// assert b == 0
ret = 0;
}
} else if (a > 0) {
// assert a > 0
// assert b > 0
// check for positive overflow with positive a, positive b
if (a <= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new MathArithmeticException();
}
} else {
// assert a == 0
ret = 0;
}
}
return ret;
}
/**
* Normalize an angle in a 2&pi wide interval around a center value.
* <p>This method has three main uses:</p>

View File

@ -18,8 +18,8 @@ package org.apache.commons.math.analysis.polynomials;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.analysis.integration.LegendreGaussIntegrator;
import org.apache.commons.math.util.ArithmeticsUtils;
import org.apache.commons.math.util.FastMath;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.Precision;
import org.junit.Assert;
import org.junit.Test;
@ -289,7 +289,7 @@ public class PolynomialsUtilsTest {
for (int w = 0; w < 10; ++w) {
for (int i = 0; i < 10; ++i) {
PolynomialFunction jacobi = PolynomialsUtils.createJacobiPolynomial(i, v, w);
double binomial = MathUtils.binomialCoefficient(v + i, i);
double binomial = ArithmeticsUtils.binomialCoefficient(v + i, i);
Assert.assertTrue(Precision.equals(binomial, jacobi.value(1.0), 1));
}
}

View File

@ -17,7 +17,7 @@
package org.apache.commons.math.linear;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.ArithmeticsUtils;
/**
* This class implements inverses of Hilbert Matrices as
@ -54,13 +54,13 @@ public class InverseHilbertMatrix
*/
public long getEntry(final int i, final int j) {
long val = i + j + 1;
long aux = MathUtils.binomialCoefficient(n + i, n - j - 1);
val = MathUtils.mulAndCheck(val, aux);
aux = MathUtils.binomialCoefficient(n + j, n - i - 1);
val = MathUtils.mulAndCheck(val, aux);
aux = MathUtils.binomialCoefficient(i + j, i);
val = MathUtils.mulAndCheck(val, aux);
val = MathUtils.mulAndCheck(val, aux);
long aux = ArithmeticsUtils.binomialCoefficient(n + i, n - j - 1);
val = ArithmeticsUtils.mulAndCheck(val, aux);
aux = ArithmeticsUtils.binomialCoefficient(n + j, n - i - 1);
val = ArithmeticsUtils.mulAndCheck(val, aux);
aux = ArithmeticsUtils.binomialCoefficient(i + j, i);
val = ArithmeticsUtils.mulAndCheck(val, aux);
val = ArithmeticsUtils.mulAndCheck(val, aux);
return ((i + j) & 1) == 0 ? val : -val;
}

View File

@ -17,6 +17,9 @@
package org.apache.commons.math.util;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.commons.math.exception.MathArithmeticException;
import org.apache.commons.math.exception.MathIllegalArgumentException;
@ -30,15 +33,16 @@ import org.junit.Test;
* @version $Id$
*/
public class ArithmeticsUtilsTest {
/**
* Exact direct multiplication implementation to test against
*/
private long factorial(int n) {
long result = 1;
for (int i = 2; i <= n; i++) {
result *= i;
}
return result;
/** cached binomial coefficients */
private static final List<Map<Integer, Long>> binomialCache = new ArrayList<Map<Integer, Long>>();
/** Verify that b(0,0) = 1 */
@Test
public void test0Choose0() {
Assert.assertEquals(ArithmeticsUtils.binomialCoefficientDouble(0, 0), 1d, 0);
Assert.assertEquals(ArithmeticsUtils.binomialCoefficientLog(0, 0), 0d, 0);
Assert.assertEquals(ArithmeticsUtils.binomialCoefficient(0, 0), 1);
}
@Test
@ -58,7 +62,6 @@ public class ArithmeticsUtilsTest {
}
}
@Test
public void testAddAndCheckLong() {
long max = Long.MAX_VALUE;
@ -77,68 +80,169 @@ public class ArithmeticsUtilsTest {
testAddAndCheckLongFailure(-1L, min);
}
private void testAddAndCheckLongFailure(long a, long b) {
try {
ArithmeticsUtils.addAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
@Test
public void testBinomialCoefficient() {
long[] bcoef5 = {
1,
5,
10,
10,
5,
1 };
long[] bcoef6 = {
1,
6,
15,
20,
15,
6,
1 };
for (int i = 0; i < 6; i++) {
Assert.assertEquals("5 choose " + i, bcoef5[i], ArithmeticsUtils.binomialCoefficient(5, i));
}
for (int i = 0; i < 7; i++) {
Assert.assertEquals("6 choose " + i, bcoef6[i], ArithmeticsUtils.binomialCoefficient(6, i));
}
for (int n = 1; n < 10; n++) {
for (int k = 0; k <= n; k++) {
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficient(n, k));
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE);
Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), ArithmeticsUtils.binomialCoefficientLog(n, k), 10E-12);
}
}
int[] n = { 34, 66, 100, 1500, 1500 };
int[] k = { 17, 33, 10, 1500 - 4, 4 };
for (int i = 0; i < n.length; i++) {
long expected = binomialCoefficient(n[i], k[i]);
Assert.assertEquals(n[i] + " choose " + k[i], expected,
ArithmeticsUtils.binomialCoefficient(n[i], k[i]));
Assert.assertEquals(n[i] + " choose " + k[i], expected,
ArithmeticsUtils.binomialCoefficientDouble(n[i], k[i]), 0.0);
Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected),
ArithmeticsUtils.binomialCoefficientLog(n[i], k[i]), 0.0);
}
}
@Test
public void testSubAndCheck() {
int big = Integer.MAX_VALUE;
int bigNeg = Integer.MIN_VALUE;
Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0));
Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1));
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big));
public void testBinomialCoefficientFail() {
try {
ArithmeticsUtils.subAndCheck(big, -1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
ArithmeticsUtils.binomialCoefficient(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficientDouble(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficientLog(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficient(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.subAndCheck(bigNeg, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
ArithmeticsUtils.binomialCoefficientDouble(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficientLog(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficient(67, 30);
Assert.fail("expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// ignored
}
try {
ArithmeticsUtils.binomialCoefficient(67, 34);
Assert.fail("expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// ignored
}
double x = ArithmeticsUtils.binomialCoefficientDouble(1030, 515);
Assert.assertTrue("expecting infinite binomial coefficient", Double
.isInfinite(x));
}
/**
* Tests correctness for large n and sharpness of upper bound in API doc
* JIRA: MATH-241
*/
@Test
public void testSubAndCheckErrorMessage() {
int big = Integer.MAX_VALUE;
public void testBinomialCoefficientLarge() throws Exception {
// This tests all legal and illegal values for n <= 200.
for (int n = 0; n <= 200; n++) {
for (int k = 0; k <= n; k++) {
long ourResult = -1;
long exactResult = -1;
boolean shouldThrow = false;
boolean didThrow = false;
try {
ourResult = ArithmeticsUtils.binomialCoefficient(n, k);
} catch (MathArithmeticException ex) {
didThrow = true;
}
try {
exactResult = binomialCoefficient(n, k);
} catch (MathArithmeticException ex) {
shouldThrow = true;
}
Assert.assertEquals(n + " choose " + k, exactResult, ourResult);
Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow);
Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow));
if (!shouldThrow && exactResult > 1) {
Assert.assertEquals(n + " choose " + k, 1.,
ArithmeticsUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10);
Assert.assertEquals(n + " choose " + k, 1,
ArithmeticsUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10);
}
}
}
long ourResult = ArithmeticsUtils.binomialCoefficient(300, 3);
long exactResult = binomialCoefficient(300, 3);
Assert.assertEquals(exactResult, ourResult);
ourResult = ArithmeticsUtils.binomialCoefficient(700, 697);
exactResult = binomialCoefficient(700, 697);
Assert.assertEquals(exactResult, ourResult);
// This one should throw
try {
ArithmeticsUtils.subAndCheck(big, -1);
ArithmeticsUtils.binomialCoefficient(700, 300);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
Assert.assertTrue(ex.getMessage().length() > 1);
// Expected
}
}
@Test
public void testSubAndCheckLong() {
long max = Long.MAX_VALUE;
long min = Long.MIN_VALUE;
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0));
Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0));
Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max));
Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1));
// min == -1-max
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max));
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max));
testSubAndCheckLongFailure(0L, min);
testSubAndCheckLongFailure(max, -1L);
testSubAndCheckLongFailure(min, 1L);
}
private void testSubAndCheckLongFailure(long a, long b) {
try {
ArithmeticsUtils.subAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
}
int n = 10000;
ourResult = ArithmeticsUtils.binomialCoefficient(n, 3);
exactResult = binomialCoefficient(n, 3);
Assert.assertEquals(exactResult, ourResult);
Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10);
Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10);
}
@ -184,7 +288,6 @@ public class ArithmeticsUtilsTest {
Assert.assertTrue("expecting infinite factorial value", Double.isInfinite(ArithmeticsUtils.factorialDouble(171)));
}
@Test
public void testGcd() {
int a = 30;
@ -236,6 +339,30 @@ public class ArithmeticsUtilsTest {
}
}
@Test
public void testGcdConsistency() {
int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131};
ArrayList<Integer> primes = new ArrayList<Integer>();
for (int i = 0; i < primeList.length; i++) {
primes.add(Integer.valueOf(primeList[i]));
}
RandomDataImpl randomData = new RandomDataImpl();
for (int i = 0; i < 20; i++) {
Object[] sample = randomData.nextSample(primes, 4);
int p1 = ((Integer) sample[0]).intValue();
int p2 = ((Integer) sample[1]).intValue();
int p3 = ((Integer) sample[2]).intValue();
int p4 = ((Integer) sample[3]).intValue();
int i1 = p1 * p2 * p3;
int i2 = p1 * p2 * p4;
int gcd = p1 * p2;
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2));
long l1 = i1;
long l2 = i2;
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2));
}
}
@Test
public void testGcdLong(){
long a = 30;
@ -289,27 +416,262 @@ public class ArithmeticsUtilsTest {
}
}
@Test
public void testGcdConsistency() {
int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131};
ArrayList<Integer> primes = new ArrayList<Integer>();
for (int i = 0; i < primeList.length; i++) {
primes.add(Integer.valueOf(primeList[i]));
public void testLcm() {
int a = 30;
int b = 50;
int c = 77;
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b));
Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0));
Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b));
Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1));
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b));
Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c));
// Assert that no intermediate value overflows:
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
Assert.assertEquals((1<<20)*15, ArithmeticsUtils.lcm((1<<20)*3, (1<<20)*5));
// Special case
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, 0));
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
RandomDataImpl randomData = new RandomDataImpl();
for (int i = 0; i < 20; i++) {
Object[] sample = randomData.nextSample(primes, 4);
int p1 = ((Integer) sample[0]).intValue();
int p2 = ((Integer) sample[1]).intValue();
int p3 = ((Integer) sample[2]).intValue();
int p4 = ((Integer) sample[3]).intValue();
int i1 = p1 * p2 * p3;
int i2 = p1 * p2 * p4;
int gcd = p1 * p2;
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2));
long l1 = i1;
long l2 = i2;
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2));
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1<<20);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
try {
ArithmeticsUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
}
@Test
public void testLcmLong() {
long a = 30;
long b = 50;
long c = 77;
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b));
Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0));
Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b));
Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1));
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b));
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b));
Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c));
Assert.assertEquals(Long.MAX_VALUE, ArithmeticsUtils.lcm(60247241209L, 153092023L));
// Assert that no intermediate value overflows:
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
Assert.assertEquals((1L<<50)*15, ArithmeticsUtils.lcm((1L<<45)*3, (1L<<50)*5));
// Special case
Assert.assertEquals(0L, ArithmeticsUtils.lcm(0L, 0L));
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
ArithmeticsUtils.lcm(Long.MIN_VALUE, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
ArithmeticsUtils.lcm(Long.MIN_VALUE, 1<<20);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1),
ArithmeticsUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1));
try {
ArithmeticsUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
}
@Test
public void testMulAndCheck() {
int big = Integer.MAX_VALUE;
int bigNeg = Integer.MIN_VALUE;
Assert.assertEquals(big, ArithmeticsUtils.mulAndCheck(big, 1));
try {
ArithmeticsUtils.mulAndCheck(big, 2);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
try {
ArithmeticsUtils.mulAndCheck(bigNeg, 2);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
}
@Test
public void testMulAndCheckLong() {
long max = Long.MAX_VALUE;
long min = Long.MIN_VALUE;
Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(max, 1L));
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min, 1L));
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(max, 0L));
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(min, 0L));
Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(1L, max));
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(1L, min));
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, max));
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, min));
Assert.assertEquals(1L, ArithmeticsUtils.mulAndCheck(-1L, -1L));
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min / 2, 2));
testMulAndCheckLongFailure(max, 2L);
testMulAndCheckLongFailure(2L, max);
testMulAndCheckLongFailure(min, 2L);
testMulAndCheckLongFailure(2L, min);
testMulAndCheckLongFailure(min, -1L);
testMulAndCheckLongFailure(-1L, min);
}
@Test
public void testSubAndCheck() {
int big = Integer.MAX_VALUE;
int bigNeg = Integer.MIN_VALUE;
Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0));
Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1));
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big));
try {
ArithmeticsUtils.subAndCheck(big, -1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
try {
ArithmeticsUtils.subAndCheck(bigNeg, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
}
@Test
public void testSubAndCheckErrorMessage() {
int big = Integer.MAX_VALUE;
try {
ArithmeticsUtils.subAndCheck(big, -1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
Assert.assertTrue(ex.getMessage().length() > 1);
}
}
@Test
public void testSubAndCheckLong() {
long max = Long.MAX_VALUE;
long min = Long.MIN_VALUE;
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0));
Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0));
Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max));
Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1));
// min == -1-max
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max));
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max));
testSubAndCheckLongFailure(0L, min);
testSubAndCheckLongFailure(max, -1L);
testSubAndCheckLongFailure(min, 1L);
}
/**
* Exact (caching) recursive implementation to test against
*/
private long binomialCoefficient(int n, int k) throws MathArithmeticException {
if (binomialCache.size() > n) {
Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k));
if (cachedResult != null) {
return cachedResult.longValue();
}
}
long result = -1;
if ((n == k) || (k == 0)) {
result = 1;
} else if ((k == 1) || (k == n - 1)) {
result = n;
} else {
// Reduce stack depth for larger values of n
if (k < n - 100) {
binomialCoefficient(n - 100, k);
}
if (k > 100) {
binomialCoefficient(n - 100, k - 100);
}
result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1),
binomialCoefficient(n - 1, k));
}
if (result == -1) {
throw new MathArithmeticException();
}
for (int i = binomialCache.size(); i < n + 1; i++) {
binomialCache.add(new HashMap<Integer, Long>());
}
binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result));
return result;
}
/**
* Exact direct multiplication implementation to test against
*/
private long factorial(int n) {
long result = 1;
for (int i = 2; i <= n; i++) {
result *= i;
}
return result;
}
private void testAddAndCheckLongFailure(long a, long b) {
try {
ArithmeticsUtils.addAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
}
}
private void testMulAndCheckLongFailure(long a, long b) {
try {
ArithmeticsUtils.mulAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
}
}
private void testSubAndCheckLongFailure(long a, long b) {
try {
ArithmeticsUtils.subAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
}
}
}

View File

@ -15,11 +15,6 @@ package org.apache.commons.math.util;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.commons.math.TestUtils;
@ -38,219 +33,6 @@ import org.junit.Test;
* 2007) $
*/
public final class MathUtilsTest {
/** cached binomial coefficients */
private static final List<Map<Integer, Long>> binomialCache = new ArrayList<Map<Integer, Long>>();
/**
* Exact (caching) recursive implementation to test against
*/
private long binomialCoefficient(int n, int k) throws MathArithmeticException {
if (binomialCache.size() > n) {
Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k));
if (cachedResult != null) {
return cachedResult.longValue();
}
}
long result = -1;
if ((n == k) || (k == 0)) {
result = 1;
} else if ((k == 1) || (k == n - 1)) {
result = n;
} else {
// Reduce stack depth for larger values of n
if (k < n - 100) {
binomialCoefficient(n - 100, k);
}
if (k > 100) {
binomialCoefficient(n - 100, k - 100);
}
result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1),
binomialCoefficient(n - 1, k));
}
if (result == -1) {
throw new MathArithmeticException();
}
for (int i = binomialCache.size(); i < n + 1; i++) {
binomialCache.add(new HashMap<Integer, Long>());
}
binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result));
return result;
}
/** Verify that b(0,0) = 1 */
@Test
public void test0Choose0() {
Assert.assertEquals(MathUtils.binomialCoefficientDouble(0, 0), 1d, 0);
Assert.assertEquals(MathUtils.binomialCoefficientLog(0, 0), 0d, 0);
Assert.assertEquals(MathUtils.binomialCoefficient(0, 0), 1);
}
@Test
public void testBinomialCoefficient() {
long[] bcoef5 = {
1,
5,
10,
10,
5,
1 };
long[] bcoef6 = {
1,
6,
15,
20,
15,
6,
1 };
for (int i = 0; i < 6; i++) {
Assert.assertEquals("5 choose " + i, bcoef5[i], MathUtils.binomialCoefficient(5, i));
}
for (int i = 0; i < 7; i++) {
Assert.assertEquals("6 choose " + i, bcoef6[i], MathUtils.binomialCoefficient(6, i));
}
for (int n = 1; n < 10; n++) {
for (int k = 0; k <= n; k++) {
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficient(n, k));
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE);
Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), MathUtils.binomialCoefficientLog(n, k), 10E-12);
}
}
int[] n = { 34, 66, 100, 1500, 1500 };
int[] k = { 17, 33, 10, 1500 - 4, 4 };
for (int i = 0; i < n.length; i++) {
long expected = binomialCoefficient(n[i], k[i]);
Assert.assertEquals(n[i] + " choose " + k[i], expected,
MathUtils.binomialCoefficient(n[i], k[i]));
Assert.assertEquals(n[i] + " choose " + k[i], expected,
MathUtils.binomialCoefficientDouble(n[i], k[i]), 0.0);
Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected),
MathUtils.binomialCoefficientLog(n[i], k[i]), 0.0);
}
}
/**
* Tests correctness for large n and sharpness of upper bound in API doc
* JIRA: MATH-241
*/
@Test
public void testBinomialCoefficientLarge() throws Exception {
// This tests all legal and illegal values for n <= 200.
for (int n = 0; n <= 200; n++) {
for (int k = 0; k <= n; k++) {
long ourResult = -1;
long exactResult = -1;
boolean shouldThrow = false;
boolean didThrow = false;
try {
ourResult = MathUtils.binomialCoefficient(n, k);
} catch (MathArithmeticException ex) {
didThrow = true;
}
try {
exactResult = binomialCoefficient(n, k);
} catch (MathArithmeticException ex) {
shouldThrow = true;
}
Assert.assertEquals(n + " choose " + k, exactResult, ourResult);
Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow);
Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow));
if (!shouldThrow && exactResult > 1) {
Assert.assertEquals(n + " choose " + k, 1.,
MathUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10);
Assert.assertEquals(n + " choose " + k, 1,
MathUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10);
}
}
}
long ourResult = MathUtils.binomialCoefficient(300, 3);
long exactResult = binomialCoefficient(300, 3);
Assert.assertEquals(exactResult, ourResult);
ourResult = MathUtils.binomialCoefficient(700, 697);
exactResult = binomialCoefficient(700, 697);
Assert.assertEquals(exactResult, ourResult);
// This one should throw
try {
MathUtils.binomialCoefficient(700, 300);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// Expected
}
int n = 10000;
ourResult = MathUtils.binomialCoefficient(n, 3);
exactResult = binomialCoefficient(n, 3);
Assert.assertEquals(exactResult, ourResult);
Assert.assertEquals(1, MathUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10);
Assert.assertEquals(1, MathUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10);
}
@Test
public void testBinomialCoefficientFail() {
try {
MathUtils.binomialCoefficient(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficientDouble(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficientLog(4, 5);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficient(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficientDouble(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficientLog(-1, -2);
Assert.fail("expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// ignored
}
try {
MathUtils.binomialCoefficient(67, 30);
Assert.fail("expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// ignored
}
try {
MathUtils.binomialCoefficient(67, 34);
Assert.fail("expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// ignored
}
double x = MathUtils.binomialCoefficientDouble(1030, 515);
Assert.assertTrue("expecting infinite binomial coefficient", Double
.isInfinite(x));
}
@Test
public void testCosh() {
double x = 3.0;
@ -380,104 +162,6 @@ public final class MathUtilsTest {
Assert.assertEquals((short)(-1), MathUtils.indicator((short)(-2)));
}
@Test
public void testLcm() {
int a = 30;
int b = 50;
int c = 77;
Assert.assertEquals(0, MathUtils.lcm(0, b));
Assert.assertEquals(0, MathUtils.lcm(a, 0));
Assert.assertEquals(b, MathUtils.lcm(1, b));
Assert.assertEquals(a, MathUtils.lcm(a, 1));
Assert.assertEquals(150, MathUtils.lcm(a, b));
Assert.assertEquals(150, MathUtils.lcm(-a, b));
Assert.assertEquals(150, MathUtils.lcm(a, -b));
Assert.assertEquals(150, MathUtils.lcm(-a, -b));
Assert.assertEquals(2310, MathUtils.lcm(a, c));
// Assert that no intermediate value overflows:
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
Assert.assertEquals((1<<20)*15, MathUtils.lcm((1<<20)*3, (1<<20)*5));
// Special case
Assert.assertEquals(0, MathUtils.lcm(0, 0));
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
MathUtils.lcm(Integer.MIN_VALUE, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
MathUtils.lcm(Integer.MIN_VALUE, 1<<20);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
try {
MathUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
}
@Test
public void testLcmLong() {
long a = 30;
long b = 50;
long c = 77;
Assert.assertEquals(0, MathUtils.lcm(0, b));
Assert.assertEquals(0, MathUtils.lcm(a, 0));
Assert.assertEquals(b, MathUtils.lcm(1, b));
Assert.assertEquals(a, MathUtils.lcm(a, 1));
Assert.assertEquals(150, MathUtils.lcm(a, b));
Assert.assertEquals(150, MathUtils.lcm(-a, b));
Assert.assertEquals(150, MathUtils.lcm(a, -b));
Assert.assertEquals(150, MathUtils.lcm(-a, -b));
Assert.assertEquals(2310, MathUtils.lcm(a, c));
Assert.assertEquals(Long.MAX_VALUE, MathUtils.lcm(60247241209L, 153092023L));
// Assert that no intermediate value overflows:
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
Assert.assertEquals((1L<<50)*15, MathUtils.lcm((1L<<45)*3, (1L<<50)*5));
// Special case
Assert.assertEquals(0L, MathUtils.lcm(0L, 0L));
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
MathUtils.lcm(Long.MIN_VALUE, 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
try {
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
MathUtils.lcm(Long.MIN_VALUE, 1<<20);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1),
MathUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1));
try {
MathUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException expected) {
// expected
}
}
@Test
public void testLog() {
Assert.assertEquals(2.0, MathUtils.log(2, 4), 0);
@ -489,54 +173,6 @@ public final class MathUtilsTest {
Assert.assertEquals(Double.NEGATIVE_INFINITY, MathUtils.log(10, 0), 0);
}
@Test
public void testMulAndCheck() {
int big = Integer.MAX_VALUE;
int bigNeg = Integer.MIN_VALUE;
Assert.assertEquals(big, MathUtils.mulAndCheck(big, 1));
try {
MathUtils.mulAndCheck(big, 2);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
try {
MathUtils.mulAndCheck(bigNeg, 2);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
}
}
@Test
public void testMulAndCheckLong() {
long max = Long.MAX_VALUE;
long min = Long.MIN_VALUE;
Assert.assertEquals(max, MathUtils.mulAndCheck(max, 1L));
Assert.assertEquals(min, MathUtils.mulAndCheck(min, 1L));
Assert.assertEquals(0L, MathUtils.mulAndCheck(max, 0L));
Assert.assertEquals(0L, MathUtils.mulAndCheck(min, 0L));
Assert.assertEquals(max, MathUtils.mulAndCheck(1L, max));
Assert.assertEquals(min, MathUtils.mulAndCheck(1L, min));
Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, max));
Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, min));
Assert.assertEquals(1L, MathUtils.mulAndCheck(-1L, -1L));
Assert.assertEquals(min, MathUtils.mulAndCheck(min / 2, 2));
testMulAndCheckLongFailure(max, 2L);
testMulAndCheckLongFailure(2L, max);
testMulAndCheckLongFailure(min, 2L);
testMulAndCheckLongFailure(2L, min);
testMulAndCheckLongFailure(min, -1L);
testMulAndCheckLongFailure(-1L, min);
}
private void testMulAndCheckLongFailure(long a, long b) {
try {
MathUtils.mulAndCheck(a, b);
Assert.fail("Expecting MathArithmeticException");
} catch (MathArithmeticException ex) {
// success
}
}
@Test
public void testNormalizeAngle() {
for (double a = -15.0; a <= 15.0; a += 0.1) {