Finished moving methods from MathUtils to ArithmeticsUtils (MATH-689)
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1182658 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
d8866aedf4
commit
6a5fe463ea
|
@ -22,8 +22,8 @@ import java.util.List;
|
|||
import java.util.Map;
|
||||
|
||||
import org.apache.commons.math.fraction.BigFraction;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
|
||||
/**
|
||||
* A collection of static methods that operate on or return polynomials.
|
||||
|
@ -326,7 +326,7 @@ public class PolynomialsUtils {
|
|||
final int[][] coeff = new int[dp1][dp1];
|
||||
for (int i = 0; i < dp1; i++){
|
||||
for(int j = 0; j <= i; j++){
|
||||
coeff[i][j] = (int) MathUtils.binomialCoefficient(i, j);
|
||||
coeff[i][j] = (int) ArithmeticsUtils.binomialCoefficient(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ import org.apache.commons.math.exception.NotPositiveException;
|
|||
import org.apache.commons.math.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -231,9 +231,9 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
* @return PMF for the distribution.
|
||||
*/
|
||||
private double probability(int n, int m, int k, int x) {
|
||||
return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) +
|
||||
MathUtils.binomialCoefficientLog(n - m, k - x) -
|
||||
MathUtils.binomialCoefficientLog(n, k));
|
||||
return FastMath.exp(ArithmeticsUtils.binomialCoefficientLog(m, x) +
|
||||
ArithmeticsUtils.binomialCoefficientLog(n - m, k - x) -
|
||||
ArithmeticsUtils.binomialCoefficientLog(n, k));
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -22,7 +22,7 @@ import org.apache.commons.math.exception.OutOfRangeException;
|
|||
import org.apache.commons.math.exception.NotPositiveException;
|
||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math.special.Beta;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -128,7 +128,7 @@ public class PascalDistributionImpl extends AbstractIntegerDistribution
|
|||
if (x < 0) {
|
||||
ret = 0.0;
|
||||
} else {
|
||||
ret = MathUtils.binomialCoefficientDouble(x +
|
||||
ret = ArithmeticsUtils.binomialCoefficientDouble(x +
|
||||
numberOfSuccesses - 1, numberOfSuccesses - 1) *
|
||||
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
|
||||
FastMath.pow(1.0 - probabilityOfSuccess, x);
|
||||
|
|
|
@ -24,7 +24,6 @@ import org.apache.commons.math.exception.util.LocalizedFormats;
|
|||
import org.apache.commons.math.exception.MathArithmeticException;
|
||||
import org.apache.commons.math.exception.NullArgumentException;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -490,12 +489,12 @@ public class Fraction
|
|||
int d1 = ArithmeticsUtils.gcd(denominator, fraction.denominator);
|
||||
if (d1==1) {
|
||||
// result is ( (u*v' +/- u'v) / u'v')
|
||||
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
|
||||
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
|
||||
int uvp = ArithmeticsUtils.mulAndCheck(numerator, fraction.denominator);
|
||||
int upv = ArithmeticsUtils.mulAndCheck(fraction.numerator, denominator);
|
||||
return new Fraction
|
||||
(isAdd ? ArithmeticsUtils.addAndCheck(uvp, upv) :
|
||||
ArithmeticsUtils.subAndCheck(uvp, upv),
|
||||
MathUtils.mulAndCheck(denominator, fraction.denominator));
|
||||
ArithmeticsUtils.mulAndCheck(denominator, fraction.denominator));
|
||||
}
|
||||
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
|
||||
// exercise 7. we're going to use a BigInteger.
|
||||
|
@ -517,7 +516,7 @@ public class Fraction
|
|||
w);
|
||||
}
|
||||
return new Fraction (w.intValue(),
|
||||
MathUtils.mulAndCheck(denominator/d1,
|
||||
ArithmeticsUtils.mulAndCheck(denominator/d1,
|
||||
fraction.denominator/d2));
|
||||
}
|
||||
|
||||
|
@ -543,8 +542,8 @@ public class Fraction
|
|||
int d1 = ArithmeticsUtils.gcd(numerator, fraction.denominator);
|
||||
int d2 = ArithmeticsUtils.gcd(fraction.numerator, denominator);
|
||||
return getReducedFraction
|
||||
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
|
||||
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
|
||||
(ArithmeticsUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
|
||||
ArithmeticsUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.apache.commons.math.util;
|
|||
|
||||
import org.apache.commons.math.exception.MathArithmeticException;
|
||||
import org.apache.commons.math.exception.NotPositiveException;
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math.exception.util.Localizable;
|
||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||
|
||||
|
@ -77,92 +78,193 @@ public final class ArithmeticsUtils {
|
|||
}
|
||||
|
||||
/**
|
||||
* Add two long integers, checking for overflow.
|
||||
* Returns an exact representation of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* <li> The result is small enough to fit into a {@code long}. The
|
||||
* largest value of {@code n} for which all coefficients are
|
||||
* {@code < Long.MAX_VALUE} is 66. If the computed value exceeds
|
||||
* {@code Long.MAX_VALUE} an {@code ArithMeticException} is
|
||||
* thrown.</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param a Addend.
|
||||
* @param b Addend.
|
||||
* @param pattern Pattern to use for any thrown exception.
|
||||
* @return the sum {@code a + b}.
|
||||
* @throws MathArithmeticException if the result cannot be represented
|
||||
* as a {@code long}.
|
||||
* @since 1.2
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws MathIllegalArgumentException if preconditions are not met.
|
||||
* @throws MathArithmeticException if the result is too large to be
|
||||
* represented by a long integer.
|
||||
*/
|
||||
private static long addAndCheck(long a, long b, Localizable pattern) {
|
||||
long ret;
|
||||
if (a > b) {
|
||||
// use symmetry to reduce boundary cases
|
||||
ret = addAndCheck(b, a, pattern);
|
||||
} else {
|
||||
// assert a <= b
|
||||
public static long binomialCoefficient(final int n, final int k) {
|
||||
ArithmeticsUtils.checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
// Use symmetry for large k
|
||||
if (k > n / 2) {
|
||||
return binomialCoefficient(n, n - k);
|
||||
}
|
||||
|
||||
if (a < 0) {
|
||||
if (b < 0) {
|
||||
// check for negative overflow
|
||||
if (Long.MIN_VALUE - b <= a) {
|
||||
ret = a + b;
|
||||
} else {
|
||||
throw new MathArithmeticException(pattern, a, b);
|
||||
// We use the formula
|
||||
// (n choose k) = n! / (n-k)! / k!
|
||||
// (n choose k) == ((n-k+1)*...*n) / (1*...*k)
|
||||
// which could be written
|
||||
// (n choose k) == (n-1 choose k-1) * n / k
|
||||
long result = 1;
|
||||
if (n <= 61) {
|
||||
// For n <= 61, the naive implementation cannot overflow.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
result = result * i / j;
|
||||
i++;
|
||||
}
|
||||
} else if (n <= 66) {
|
||||
// For n > 61 but n <= 66, the result cannot overflow,
|
||||
// but we must take care not to overflow intermediate values.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
// We know that (result * i) is divisible by j,
|
||||
// but (result * i) may overflow, so we split j:
|
||||
// Filter out the gcd, d, so j/d and i/d are integer.
|
||||
// result is divisible by (j/d) because (j/d)
|
||||
// is relative prime to (i/d) and is a divisor of
|
||||
// result * (i/d).
|
||||
final long d = gcd(i, j);
|
||||
result = (result / (j / d)) * (i / d);
|
||||
i++;
|
||||
}
|
||||
} else {
|
||||
// opposite sign addition is always safe
|
||||
ret = a + b;
|
||||
}
|
||||
} else {
|
||||
// assert a >= 0
|
||||
// assert b >= 0
|
||||
|
||||
// check for positive overflow
|
||||
if (a <= Long.MAX_VALUE - b) {
|
||||
ret = a + b;
|
||||
} else {
|
||||
throw new MathArithmeticException(pattern, a, b);
|
||||
// For n > 66, a result overflow might occur, so we check
|
||||
// the multiplication, taking care to not overflow
|
||||
// unnecessary.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
final long d = gcd(i, j);
|
||||
result = mulAndCheck(result / (j / d), i / d);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract two integers, checking for overflow.
|
||||
* Returns a {@code double} representation of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* <li> The result is small enough to fit into a {@code double}. The
|
||||
* largest value of {@code n} for which all coefficients are <
|
||||
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
|
||||
* Double.POSITIVE_INFINITY is returned</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param x Minuend.
|
||||
* @param y Subtrahend.
|
||||
* @return the difference {@code x - y}.
|
||||
* @throws MathArithmeticException if the result can not be represented
|
||||
* as an {@code int}.
|
||||
* @since 1.1
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws IllegalArgumentException if preconditions are not met.
|
||||
*/
|
||||
public static int subAndCheck(int x, int y) {
|
||||
long s = (long)x - (long)y;
|
||||
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
|
||||
public static double binomialCoefficientDouble(final int n, final int k) {
|
||||
ArithmeticsUtils.checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1d;
|
||||
}
|
||||
return (int)s;
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
if (k > n/2) {
|
||||
return binomialCoefficientDouble(n, n - k);
|
||||
}
|
||||
if (n < 67) {
|
||||
return binomialCoefficient(n,k);
|
||||
}
|
||||
|
||||
double result = 1d;
|
||||
for (int i = 1; i <= k; i++) {
|
||||
result *= (double)(n - k + i) / (double)i;
|
||||
}
|
||||
|
||||
return FastMath.floor(result + 0.5);
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract two long integers, checking for overflow.
|
||||
* Returns the natural {@code log} of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param a Value.
|
||||
* @param b Value.
|
||||
* @return the difference {@code a - b}.
|
||||
* @throws MathArithmeticException if the result can not be represented as a
|
||||
* {@code long}.
|
||||
* @since 1.2
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws IllegalArgumentException if preconditions are not met.
|
||||
*/
|
||||
public static long subAndCheck(long a, long b) {
|
||||
long ret;
|
||||
if (b == Long.MIN_VALUE) {
|
||||
if (a < 0) {
|
||||
ret = a - b;
|
||||
} else {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b);
|
||||
public static double binomialCoefficientLog(final int n, final int k) {
|
||||
ArithmeticsUtils.checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 0;
|
||||
}
|
||||
} else {
|
||||
// use additive inverse
|
||||
ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return FastMath.log(n);
|
||||
}
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* For values small enough to do exact integer computation,
|
||||
* return the log of the exact value
|
||||
*/
|
||||
if (n < 67) {
|
||||
return FastMath.log(binomialCoefficient(n,k));
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the log of binomialCoefficientDouble for values that will not
|
||||
* overflow binomialCoefficientDouble
|
||||
*/
|
||||
if (n < 1030) {
|
||||
return FastMath.log(binomialCoefficientDouble(n, k));
|
||||
}
|
||||
|
||||
if (k > n / 2) {
|
||||
return binomialCoefficientLog(n, n - k);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sum logs for values that could overflow
|
||||
*/
|
||||
double logSum = 0;
|
||||
|
||||
// n!/(n-k)!
|
||||
for (int i = n - k + 1; i <= n; i++) {
|
||||
logSum += FastMath.log(i);
|
||||
}
|
||||
|
||||
// divide by k!
|
||||
for (int i = 2; i <= k; i++) {
|
||||
logSum -= FastMath.log(i);
|
||||
}
|
||||
|
||||
return logSum;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -419,4 +521,251 @@ public final class ArithmeticsUtils {
|
|||
} while (t != 0);
|
||||
return -u * (1L << k); // gcd is u*2^k
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>
|
||||
* Returns the least common multiple of the absolute value of two numbers,
|
||||
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
|
||||
* </p>
|
||||
* Special cases:
|
||||
* <ul>
|
||||
* <li>The invocations {@code lcm(Integer.MIN_VALUE, n)} and
|
||||
* {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a
|
||||
* power of 2, throw an {@code ArithmeticException}, because the result
|
||||
* would be 2^31, which is too large for an int value.</li>
|
||||
* <li>The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is
|
||||
* {@code 0} for any {@code x}.
|
||||
* </ul>
|
||||
*
|
||||
* @param a Number.
|
||||
* @param b Number.
|
||||
* @return the least common multiple, never negative.
|
||||
* @throws MathArithmeticException if the result cannot be represented as
|
||||
* a non-negative {@code int} value.
|
||||
* @since 1.1
|
||||
*/
|
||||
public static int lcm(int a, int b) {
|
||||
if (a == 0 || b == 0){
|
||||
return 0;
|
||||
}
|
||||
int lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b));
|
||||
if (lcm == Integer.MIN_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS,
|
||||
a, b);
|
||||
}
|
||||
return lcm;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>
|
||||
* Returns the least common multiple of the absolute value of two numbers,
|
||||
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
|
||||
* </p>
|
||||
* Special cases:
|
||||
* <ul>
|
||||
* <li>The invocations {@code lcm(Long.MIN_VALUE, n)} and
|
||||
* {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a
|
||||
* power of 2, throw an {@code ArithmeticException}, because the result
|
||||
* would be 2^63, which is too large for an int value.</li>
|
||||
* <li>The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is
|
||||
* {@code 0L} for any {@code x}.
|
||||
* </ul>
|
||||
*
|
||||
* @param a Number.
|
||||
* @param b Number.
|
||||
* @return the least common multiple, never negative.
|
||||
* @throws MathArithmeticException if the result cannot be represented
|
||||
* as a non-negative {@code long} value.
|
||||
* @since 2.1
|
||||
*/
|
||||
public static long lcm(long a, long b) {
|
||||
if (a == 0 || b == 0){
|
||||
return 0;
|
||||
}
|
||||
long lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b));
|
||||
if (lcm == Long.MIN_VALUE){
|
||||
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS,
|
||||
a, b);
|
||||
}
|
||||
return lcm;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply two integers, checking for overflow.
|
||||
*
|
||||
* @param x Factor.
|
||||
* @param y Factor.
|
||||
* @return the product {@code x * y}.
|
||||
* @throws MathArithmeticException if the result can not be
|
||||
* represented as an {@code int}.
|
||||
* @since 1.1
|
||||
*/
|
||||
public static int mulAndCheck(int x, int y) {
|
||||
long m = ((long)x) * ((long)y);
|
||||
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
return (int)m;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply two long integers, checking for overflow.
|
||||
*
|
||||
* @param a Factor.
|
||||
* @param b Factor.
|
||||
* @return the product {@code a * b}.
|
||||
* @throws MathArithmeticException if the result can not be represented
|
||||
* as a {@code long}.
|
||||
* @since 1.2
|
||||
*/
|
||||
public static long mulAndCheck(long a, long b) {
|
||||
long ret;
|
||||
if (a > b) {
|
||||
// use symmetry to reduce boundary cases
|
||||
ret = mulAndCheck(b, a);
|
||||
} else {
|
||||
if (a < 0) {
|
||||
if (b < 0) {
|
||||
// check for positive overflow with negative a, negative b
|
||||
if (a >= Long.MAX_VALUE / b) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
} else if (b > 0) {
|
||||
// check for negative overflow with negative a, positive b
|
||||
if (Long.MIN_VALUE / b <= a) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
|
||||
}
|
||||
} else {
|
||||
// assert b == 0
|
||||
ret = 0;
|
||||
}
|
||||
} else if (a > 0) {
|
||||
// assert a > 0
|
||||
// assert b > 0
|
||||
|
||||
// check for positive overflow with positive a, positive b
|
||||
if (a <= Long.MAX_VALUE / b) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
} else {
|
||||
// assert a == 0
|
||||
ret = 0;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract two integers, checking for overflow.
|
||||
*
|
||||
* @param x Minuend.
|
||||
* @param y Subtrahend.
|
||||
* @return the difference {@code x - y}.
|
||||
* @throws MathArithmeticException if the result can not be represented
|
||||
* as an {@code int}.
|
||||
* @since 1.1
|
||||
*/
|
||||
public static int subAndCheck(int x, int y) {
|
||||
long s = (long)x - (long)y;
|
||||
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
|
||||
}
|
||||
return (int)s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract two long integers, checking for overflow.
|
||||
*
|
||||
* @param a Value.
|
||||
* @param b Value.
|
||||
* @return the difference {@code a - b}.
|
||||
* @throws MathArithmeticException if the result can not be represented as a
|
||||
* {@code long}.
|
||||
* @since 1.2
|
||||
*/
|
||||
public static long subAndCheck(long a, long b) {
|
||||
long ret;
|
||||
if (b == Long.MIN_VALUE) {
|
||||
if (a < 0) {
|
||||
ret = a - b;
|
||||
} else {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b);
|
||||
}
|
||||
} else {
|
||||
// use additive inverse
|
||||
ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add two long integers, checking for overflow.
|
||||
*
|
||||
* @param a Addend.
|
||||
* @param b Addend.
|
||||
* @param pattern Pattern to use for any thrown exception.
|
||||
* @return the sum {@code a + b}.
|
||||
* @throws MathArithmeticException if the result cannot be represented
|
||||
* as a {@code long}.
|
||||
* @since 1.2
|
||||
*/
|
||||
private static long addAndCheck(long a, long b, Localizable pattern) {
|
||||
long ret;
|
||||
if (a > b) {
|
||||
// use symmetry to reduce boundary cases
|
||||
ret = addAndCheck(b, a, pattern);
|
||||
} else {
|
||||
// assert a <= b
|
||||
|
||||
if (a < 0) {
|
||||
if (b < 0) {
|
||||
// check for negative overflow
|
||||
if (Long.MIN_VALUE - b <= a) {
|
||||
ret = a + b;
|
||||
} else {
|
||||
throw new MathArithmeticException(pattern, a, b);
|
||||
}
|
||||
} else {
|
||||
// opposite sign addition is always safe
|
||||
ret = a + b;
|
||||
}
|
||||
} else {
|
||||
// assert a >= 0
|
||||
// assert b >= 0
|
||||
|
||||
// check for positive overflow
|
||||
if (a <= Long.MAX_VALUE - b) {
|
||||
ret = a + b;
|
||||
} else {
|
||||
throw new MathArithmeticException(pattern, a, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check binomial preconditions.
|
||||
*
|
||||
* @param n Size of the set.
|
||||
* @param k Size of the subsets to be counted.
|
||||
* @throws NotPositiveException if {@code n < 0}.
|
||||
* @throws NumberIsTooLargeException if {@code k > n}.
|
||||
*/
|
||||
private static void checkBinomial(final int n, final int k) {
|
||||
if (n < k) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
|
||||
k, n, true);
|
||||
}
|
||||
if (n < 0) {
|
||||
throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -26,7 +26,6 @@ import org.apache.commons.math.exception.MathIllegalArgumentException;
|
|||
import org.apache.commons.math.exception.NotFiniteNumberException;
|
||||
import org.apache.commons.math.exception.NotPositiveException;
|
||||
import org.apache.commons.math.exception.NullArgumentException;
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math.exception.util.Localizable;
|
||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||
|
||||
|
@ -76,214 +75,6 @@ public final class MathUtils {
|
|||
super();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an exact representation of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* <li> The result is small enough to fit into a {@code long}. The
|
||||
* largest value of {@code n} for which all coefficients are
|
||||
* {@code < Long.MAX_VALUE} is 66. If the computed value exceeds
|
||||
* {@code Long.MAX_VALUE} an {@code ArithMeticException} is
|
||||
* thrown.</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws MathIllegalArgumentException if preconditions are not met.
|
||||
* @throws MathArithmeticException if the result is too large to be
|
||||
* represented by a long integer.
|
||||
*/
|
||||
public static long binomialCoefficient(final int n, final int k) {
|
||||
checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
// Use symmetry for large k
|
||||
if (k > n / 2) {
|
||||
return binomialCoefficient(n, n - k);
|
||||
}
|
||||
|
||||
// We use the formula
|
||||
// (n choose k) = n! / (n-k)! / k!
|
||||
// (n choose k) == ((n-k+1)*...*n) / (1*...*k)
|
||||
// which could be written
|
||||
// (n choose k) == (n-1 choose k-1) * n / k
|
||||
long result = 1;
|
||||
if (n <= 61) {
|
||||
// For n <= 61, the naive implementation cannot overflow.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
result = result * i / j;
|
||||
i++;
|
||||
}
|
||||
} else if (n <= 66) {
|
||||
// For n > 61 but n <= 66, the result cannot overflow,
|
||||
// but we must take care not to overflow intermediate values.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
// We know that (result * i) is divisible by j,
|
||||
// but (result * i) may overflow, so we split j:
|
||||
// Filter out the gcd, d, so j/d and i/d are integer.
|
||||
// result is divisible by (j/d) because (j/d)
|
||||
// is relative prime to (i/d) and is a divisor of
|
||||
// result * (i/d).
|
||||
final long d = ArithmeticsUtils.gcd(i, j);
|
||||
result = (result / (j / d)) * (i / d);
|
||||
i++;
|
||||
}
|
||||
} else {
|
||||
// For n > 66, a result overflow might occur, so we check
|
||||
// the multiplication, taking care to not overflow
|
||||
// unnecessary.
|
||||
int i = n - k + 1;
|
||||
for (int j = 1; j <= k; j++) {
|
||||
final long d = ArithmeticsUtils.gcd(i, j);
|
||||
result = mulAndCheck(result / (j / d), i / d);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@code double} representation of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* <li> The result is small enough to fit into a {@code double}. The
|
||||
* largest value of {@code n} for which all coefficients are <
|
||||
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
|
||||
* Double.POSITIVE_INFINITY is returned</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws IllegalArgumentException if preconditions are not met.
|
||||
*/
|
||||
public static double binomialCoefficientDouble(final int n, final int k) {
|
||||
checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1d;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
if (k > n/2) {
|
||||
return binomialCoefficientDouble(n, n - k);
|
||||
}
|
||||
if (n < 67) {
|
||||
return binomialCoefficient(n,k);
|
||||
}
|
||||
|
||||
double result = 1d;
|
||||
for (int i = 1; i <= k; i++) {
|
||||
result *= (double)(n - k + i) / (double)i;
|
||||
}
|
||||
|
||||
return FastMath.floor(result + 0.5);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the natural {@code log} of the <a
|
||||
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
||||
* Coefficient</a>, "{@code n choose k}", the number of
|
||||
* {@code k}-element subsets that can be selected from an
|
||||
* {@code n}-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:
|
||||
* <ul>
|
||||
* <li> {@code 0 <= k <= n } (otherwise
|
||||
* {@code IllegalArgumentException} is thrown)</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return {@code n choose k}
|
||||
* @throws IllegalArgumentException if preconditions are not met.
|
||||
*/
|
||||
public static double binomialCoefficientLog(final int n, final int k) {
|
||||
checkBinomial(n, k);
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 0;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return FastMath.log(n);
|
||||
}
|
||||
|
||||
/*
|
||||
* For values small enough to do exact integer computation,
|
||||
* return the log of the exact value
|
||||
*/
|
||||
if (n < 67) {
|
||||
return FastMath.log(binomialCoefficient(n,k));
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the log of binomialCoefficientDouble for values that will not
|
||||
* overflow binomialCoefficientDouble
|
||||
*/
|
||||
if (n < 1030) {
|
||||
return FastMath.log(binomialCoefficientDouble(n, k));
|
||||
}
|
||||
|
||||
if (k > n / 2) {
|
||||
return binomialCoefficientLog(n, n - k);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sum logs for values that could overflow
|
||||
*/
|
||||
double logSum = 0;
|
||||
|
||||
// n!/(n-k)!
|
||||
for (int i = n - k + 1; i <= n; i++) {
|
||||
logSum += FastMath.log(i);
|
||||
}
|
||||
|
||||
// divide by k!
|
||||
for (int i = 2; i <= k; i++) {
|
||||
logSum -= FastMath.log(i);
|
||||
}
|
||||
|
||||
return logSum;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check binomial preconditions.
|
||||
*
|
||||
* @param n Size of the set.
|
||||
* @param k Size of the subsets to be counted.
|
||||
* @throws NotPositiveException if {@code n < 0}.
|
||||
* @throws NumberIsTooLargeException if {@code k > n}.
|
||||
*/
|
||||
private static void checkBinomial(final int n, final int k) {
|
||||
if (n < k) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
|
||||
k, n, true);
|
||||
}
|
||||
if (n < 0) {
|
||||
throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
|
||||
* hyperbolic cosine</a> of x.
|
||||
|
@ -387,74 +178,6 @@ public final class MathUtils {
|
|||
return (x >= ZS) ? PS : NS;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>
|
||||
* Returns the least common multiple of the absolute value of two numbers,
|
||||
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
|
||||
* </p>
|
||||
* Special cases:
|
||||
* <ul>
|
||||
* <li>The invocations {@code lcm(Integer.MIN_VALUE, n)} and
|
||||
* {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a
|
||||
* power of 2, throw an {@code ArithmeticException}, because the result
|
||||
* would be 2^31, which is too large for an int value.</li>
|
||||
* <li>The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is
|
||||
* {@code 0} for any {@code x}.
|
||||
* </ul>
|
||||
*
|
||||
* @param a Number.
|
||||
* @param b Number.
|
||||
* @return the least common multiple, never negative.
|
||||
* @throws MathArithmeticException if the result cannot be represented as
|
||||
* a non-negative {@code int} value.
|
||||
* @since 1.1
|
||||
*/
|
||||
public static int lcm(int a, int b) {
|
||||
if (a == 0 || b == 0){
|
||||
return 0;
|
||||
}
|
||||
int lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b));
|
||||
if (lcm == Integer.MIN_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS,
|
||||
a, b);
|
||||
}
|
||||
return lcm;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>
|
||||
* Returns the least common multiple of the absolute value of two numbers,
|
||||
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
|
||||
* </p>
|
||||
* Special cases:
|
||||
* <ul>
|
||||
* <li>The invocations {@code lcm(Long.MIN_VALUE, n)} and
|
||||
* {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a
|
||||
* power of 2, throw an {@code ArithmeticException}, because the result
|
||||
* would be 2^63, which is too large for an int value.</li>
|
||||
* <li>The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is
|
||||
* {@code 0L} for any {@code x}.
|
||||
* </ul>
|
||||
*
|
||||
* @param a Number.
|
||||
* @param b Number.
|
||||
* @return the least common multiple, never negative.
|
||||
* @throws MathArithmeticException if the result cannot be represented
|
||||
* as a non-negative {@code long} value.
|
||||
* @since 2.1
|
||||
*/
|
||||
public static long lcm(long a, long b) {
|
||||
if (a == 0 || b == 0){
|
||||
return 0;
|
||||
}
|
||||
long lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b));
|
||||
if (lcm == Long.MIN_VALUE){
|
||||
throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS,
|
||||
a, b);
|
||||
}
|
||||
return lcm;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Returns the
|
||||
* <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
|
||||
|
@ -475,78 +198,6 @@ public final class MathUtils {
|
|||
return FastMath.log(x)/FastMath.log(base);
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply two integers, checking for overflow.
|
||||
*
|
||||
* @param x Factor.
|
||||
* @param y Factor.
|
||||
* @return the product {@code x * y}.
|
||||
* @throws MathArithmeticException if the result can not be
|
||||
* represented as an {@code int}.
|
||||
* @since 1.1
|
||||
*/
|
||||
public static int mulAndCheck(int x, int y) {
|
||||
long m = ((long)x) * ((long)y);
|
||||
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
return (int)m;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply two long integers, checking for overflow.
|
||||
*
|
||||
* @param a Factor.
|
||||
* @param b Factor.
|
||||
* @return the product {@code a * b}.
|
||||
* @throws MathArithmeticException if the result can not be represented
|
||||
* as a {@code long}.
|
||||
* @since 1.2
|
||||
*/
|
||||
public static long mulAndCheck(long a, long b) {
|
||||
long ret;
|
||||
if (a > b) {
|
||||
// use symmetry to reduce boundary cases
|
||||
ret = mulAndCheck(b, a);
|
||||
} else {
|
||||
if (a < 0) {
|
||||
if (b < 0) {
|
||||
// check for positive overflow with negative a, negative b
|
||||
if (a >= Long.MAX_VALUE / b) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
} else if (b > 0) {
|
||||
// check for negative overflow with negative a, positive b
|
||||
if (Long.MIN_VALUE / b <= a) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
|
||||
}
|
||||
} else {
|
||||
// assert b == 0
|
||||
ret = 0;
|
||||
}
|
||||
} else if (a > 0) {
|
||||
// assert a > 0
|
||||
// assert b > 0
|
||||
|
||||
// check for positive overflow with positive a, positive b
|
||||
if (a <= Long.MAX_VALUE / b) {
|
||||
ret = a * b;
|
||||
} else {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
} else {
|
||||
// assert a == 0
|
||||
ret = 0;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalize an angle in a 2&pi wide interval around a center value.
|
||||
* <p>This method has three main uses:</p>
|
||||
|
|
|
@ -18,8 +18,8 @@ package org.apache.commons.math.analysis.polynomials;
|
|||
|
||||
import org.apache.commons.math.analysis.UnivariateRealFunction;
|
||||
import org.apache.commons.math.analysis.integration.LegendreGaussIntegrator;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
import org.apache.commons.math.util.Precision;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
@ -289,7 +289,7 @@ public class PolynomialsUtilsTest {
|
|||
for (int w = 0; w < 10; ++w) {
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
PolynomialFunction jacobi = PolynomialsUtils.createJacobiPolynomial(i, v, w);
|
||||
double binomial = MathUtils.binomialCoefficient(v + i, i);
|
||||
double binomial = ArithmeticsUtils.binomialCoefficient(v + i, i);
|
||||
Assert.assertTrue(Precision.equals(binomial, jacobi.value(1.0), 1));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
package org.apache.commons.math.linear;
|
||||
|
||||
import org.apache.commons.math.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
import org.apache.commons.math.util.ArithmeticsUtils;
|
||||
|
||||
/**
|
||||
* This class implements inverses of Hilbert Matrices as
|
||||
|
@ -54,13 +54,13 @@ public class InverseHilbertMatrix
|
|||
*/
|
||||
public long getEntry(final int i, final int j) {
|
||||
long val = i + j + 1;
|
||||
long aux = MathUtils.binomialCoefficient(n + i, n - j - 1);
|
||||
val = MathUtils.mulAndCheck(val, aux);
|
||||
aux = MathUtils.binomialCoefficient(n + j, n - i - 1);
|
||||
val = MathUtils.mulAndCheck(val, aux);
|
||||
aux = MathUtils.binomialCoefficient(i + j, i);
|
||||
val = MathUtils.mulAndCheck(val, aux);
|
||||
val = MathUtils.mulAndCheck(val, aux);
|
||||
long aux = ArithmeticsUtils.binomialCoefficient(n + i, n - j - 1);
|
||||
val = ArithmeticsUtils.mulAndCheck(val, aux);
|
||||
aux = ArithmeticsUtils.binomialCoefficient(n + j, n - i - 1);
|
||||
val = ArithmeticsUtils.mulAndCheck(val, aux);
|
||||
aux = ArithmeticsUtils.binomialCoefficient(i + j, i);
|
||||
val = ArithmeticsUtils.mulAndCheck(val, aux);
|
||||
val = ArithmeticsUtils.mulAndCheck(val, aux);
|
||||
return ((i + j) & 1) == 0 ? val : -val;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,6 +17,9 @@
|
|||
package org.apache.commons.math.util;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.commons.math.exception.MathArithmeticException;
|
||||
import org.apache.commons.math.exception.MathIllegalArgumentException;
|
||||
|
@ -30,15 +33,16 @@ import org.junit.Test;
|
|||
* @version $Id$
|
||||
*/
|
||||
public class ArithmeticsUtilsTest {
|
||||
/**
|
||||
* Exact direct multiplication implementation to test against
|
||||
*/
|
||||
private long factorial(int n) {
|
||||
long result = 1;
|
||||
for (int i = 2; i <= n; i++) {
|
||||
result *= i;
|
||||
}
|
||||
return result;
|
||||
|
||||
/** cached binomial coefficients */
|
||||
private static final List<Map<Integer, Long>> binomialCache = new ArrayList<Map<Integer, Long>>();
|
||||
|
||||
/** Verify that b(0,0) = 1 */
|
||||
@Test
|
||||
public void test0Choose0() {
|
||||
Assert.assertEquals(ArithmeticsUtils.binomialCoefficientDouble(0, 0), 1d, 0);
|
||||
Assert.assertEquals(ArithmeticsUtils.binomialCoefficientLog(0, 0), 0d, 0);
|
||||
Assert.assertEquals(ArithmeticsUtils.binomialCoefficient(0, 0), 1);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -58,7 +62,6 @@ public class ArithmeticsUtilsTest {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testAddAndCheckLong() {
|
||||
long max = Long.MAX_VALUE;
|
||||
|
@ -77,69 +80,170 @@ public class ArithmeticsUtilsTest {
|
|||
testAddAndCheckLongFailure(-1L, min);
|
||||
}
|
||||
|
||||
private void testAddAndCheckLongFailure(long a, long b) {
|
||||
try {
|
||||
ArithmeticsUtils.addAndCheck(a, b);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
|
||||
@Test
|
||||
public void testBinomialCoefficient() {
|
||||
long[] bcoef5 = {
|
||||
1,
|
||||
5,
|
||||
10,
|
||||
10,
|
||||
5,
|
||||
1 };
|
||||
long[] bcoef6 = {
|
||||
1,
|
||||
6,
|
||||
15,
|
||||
20,
|
||||
15,
|
||||
6,
|
||||
1 };
|
||||
for (int i = 0; i < 6; i++) {
|
||||
Assert.assertEquals("5 choose " + i, bcoef5[i], ArithmeticsUtils.binomialCoefficient(5, i));
|
||||
}
|
||||
for (int i = 0; i < 7; i++) {
|
||||
Assert.assertEquals("6 choose " + i, bcoef6[i], ArithmeticsUtils.binomialCoefficient(6, i));
|
||||
}
|
||||
|
||||
for (int n = 1; n < 10; n++) {
|
||||
for (int k = 0; k <= n; k++) {
|
||||
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficient(n, k));
|
||||
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE);
|
||||
Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), ArithmeticsUtils.binomialCoefficientLog(n, k), 10E-12);
|
||||
}
|
||||
}
|
||||
|
||||
int[] n = { 34, 66, 100, 1500, 1500 };
|
||||
int[] k = { 17, 33, 10, 1500 - 4, 4 };
|
||||
for (int i = 0; i < n.length; i++) {
|
||||
long expected = binomialCoefficient(n[i], k[i]);
|
||||
Assert.assertEquals(n[i] + " choose " + k[i], expected,
|
||||
ArithmeticsUtils.binomialCoefficient(n[i], k[i]));
|
||||
Assert.assertEquals(n[i] + " choose " + k[i], expected,
|
||||
ArithmeticsUtils.binomialCoefficientDouble(n[i], k[i]), 0.0);
|
||||
Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected),
|
||||
ArithmeticsUtils.binomialCoefficientLog(n[i], k[i]), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubAndCheck() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
int bigNeg = Integer.MIN_VALUE;
|
||||
Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0));
|
||||
Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1));
|
||||
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big));
|
||||
public void testBinomialCoefficientFail() {
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(big, -1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(bigNeg, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
ArithmeticsUtils.binomialCoefficient(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficientDouble(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficientLog(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficient(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficientDouble(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficientLog(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficient(67, 30);
|
||||
Assert.fail("expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.binomialCoefficient(67, 34);
|
||||
Assert.fail("expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// ignored
|
||||
}
|
||||
double x = ArithmeticsUtils.binomialCoefficientDouble(1030, 515);
|
||||
Assert.assertTrue("expecting infinite binomial coefficient", Double
|
||||
.isInfinite(x));
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests correctness for large n and sharpness of upper bound in API doc
|
||||
* JIRA: MATH-241
|
||||
*/
|
||||
@Test
|
||||
public void testSubAndCheckErrorMessage() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
public void testBinomialCoefficientLarge() throws Exception {
|
||||
// This tests all legal and illegal values for n <= 200.
|
||||
for (int n = 0; n <= 200; n++) {
|
||||
for (int k = 0; k <= n; k++) {
|
||||
long ourResult = -1;
|
||||
long exactResult = -1;
|
||||
boolean shouldThrow = false;
|
||||
boolean didThrow = false;
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(big, -1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
ourResult = ArithmeticsUtils.binomialCoefficient(n, k);
|
||||
} catch (MathArithmeticException ex) {
|
||||
Assert.assertTrue(ex.getMessage().length() > 1);
|
||||
didThrow = true;
|
||||
}
|
||||
try {
|
||||
exactResult = binomialCoefficient(n, k);
|
||||
} catch (MathArithmeticException ex) {
|
||||
shouldThrow = true;
|
||||
}
|
||||
Assert.assertEquals(n + " choose " + k, exactResult, ourResult);
|
||||
Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow);
|
||||
Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow));
|
||||
|
||||
if (!shouldThrow && exactResult > 1) {
|
||||
Assert.assertEquals(n + " choose " + k, 1.,
|
||||
ArithmeticsUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10);
|
||||
Assert.assertEquals(n + " choose " + k, 1,
|
||||
ArithmeticsUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubAndCheckLong() {
|
||||
long max = Long.MAX_VALUE;
|
||||
long min = Long.MIN_VALUE;
|
||||
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0));
|
||||
Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0));
|
||||
Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max));
|
||||
Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1));
|
||||
// min == -1-max
|
||||
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max));
|
||||
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max));
|
||||
testSubAndCheckLongFailure(0L, min);
|
||||
testSubAndCheckLongFailure(max, -1L);
|
||||
testSubAndCheckLongFailure(min, 1L);
|
||||
}
|
||||
long ourResult = ArithmeticsUtils.binomialCoefficient(300, 3);
|
||||
long exactResult = binomialCoefficient(300, 3);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
|
||||
private void testSubAndCheckLongFailure(long a, long b) {
|
||||
ourResult = ArithmeticsUtils.binomialCoefficient(700, 697);
|
||||
exactResult = binomialCoefficient(700, 697);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
|
||||
// This one should throw
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(a, b);
|
||||
ArithmeticsUtils.binomialCoefficient(700, 300);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
// Expected
|
||||
}
|
||||
|
||||
int n = 10000;
|
||||
ourResult = ArithmeticsUtils.binomialCoefficient(n, 3);
|
||||
exactResult = binomialCoefficient(n, 3);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10);
|
||||
Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -184,7 +288,6 @@ public class ArithmeticsUtilsTest {
|
|||
Assert.assertTrue("expecting infinite factorial value", Double.isInfinite(ArithmeticsUtils.factorialDouble(171)));
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testGcd() {
|
||||
int a = 30;
|
||||
|
@ -236,6 +339,30 @@ public class ArithmeticsUtilsTest {
|
|||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdConsistency() {
|
||||
int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131};
|
||||
ArrayList<Integer> primes = new ArrayList<Integer>();
|
||||
for (int i = 0; i < primeList.length; i++) {
|
||||
primes.add(Integer.valueOf(primeList[i]));
|
||||
}
|
||||
RandomDataImpl randomData = new RandomDataImpl();
|
||||
for (int i = 0; i < 20; i++) {
|
||||
Object[] sample = randomData.nextSample(primes, 4);
|
||||
int p1 = ((Integer) sample[0]).intValue();
|
||||
int p2 = ((Integer) sample[1]).intValue();
|
||||
int p3 = ((Integer) sample[2]).intValue();
|
||||
int p4 = ((Integer) sample[3]).intValue();
|
||||
int i1 = p1 * p2 * p3;
|
||||
int i2 = p1 * p2 * p4;
|
||||
int gcd = p1 * p2;
|
||||
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2));
|
||||
long l1 = i1;
|
||||
long l2 = i2;
|
||||
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdLong(){
|
||||
long a = 30;
|
||||
|
@ -289,27 +416,262 @@ public class ArithmeticsUtilsTest {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testGcdConsistency() {
|
||||
int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131};
|
||||
ArrayList<Integer> primes = new ArrayList<Integer>();
|
||||
for (int i = 0; i < primeList.length; i++) {
|
||||
primes.add(Integer.valueOf(primeList[i]));
|
||||
public void testLcm() {
|
||||
int a = 30;
|
||||
int b = 50;
|
||||
int c = 77;
|
||||
|
||||
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b));
|
||||
Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0));
|
||||
Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b));
|
||||
Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b));
|
||||
Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c));
|
||||
|
||||
// Assert that no intermediate value overflows:
|
||||
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
|
||||
Assert.assertEquals((1<<20)*15, ArithmeticsUtils.lcm((1<<20)*3, (1<<20)*5));
|
||||
|
||||
// Special case
|
||||
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, 0));
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
RandomDataImpl randomData = new RandomDataImpl();
|
||||
for (int i = 0; i < 20; i++) {
|
||||
Object[] sample = randomData.nextSample(primes, 4);
|
||||
int p1 = ((Integer) sample[0]).intValue();
|
||||
int p2 = ((Integer) sample[1]).intValue();
|
||||
int p3 = ((Integer) sample[2]).intValue();
|
||||
int p4 = ((Integer) sample[3]).intValue();
|
||||
int i1 = p1 * p2 * p3;
|
||||
int i2 = p1 * p2 * p4;
|
||||
int gcd = p1 * p2;
|
||||
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2));
|
||||
long l1 = i1;
|
||||
long l2 = i2;
|
||||
Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2));
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1<<20);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
try {
|
||||
ArithmeticsUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLcmLong() {
|
||||
long a = 30;
|
||||
long b = 50;
|
||||
long c = 77;
|
||||
|
||||
Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b));
|
||||
Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0));
|
||||
Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b));
|
||||
Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b));
|
||||
Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b));
|
||||
Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c));
|
||||
|
||||
Assert.assertEquals(Long.MAX_VALUE, ArithmeticsUtils.lcm(60247241209L, 153092023L));
|
||||
|
||||
// Assert that no intermediate value overflows:
|
||||
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
|
||||
Assert.assertEquals((1L<<50)*15, ArithmeticsUtils.lcm((1L<<45)*3, (1L<<50)*5));
|
||||
|
||||
// Special case
|
||||
Assert.assertEquals(0L, ArithmeticsUtils.lcm(0L, 0L));
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
ArithmeticsUtils.lcm(Long.MIN_VALUE, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
ArithmeticsUtils.lcm(Long.MIN_VALUE, 1<<20);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1),
|
||||
ArithmeticsUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1));
|
||||
try {
|
||||
ArithmeticsUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMulAndCheck() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
int bigNeg = Integer.MIN_VALUE;
|
||||
Assert.assertEquals(big, ArithmeticsUtils.mulAndCheck(big, 1));
|
||||
try {
|
||||
ArithmeticsUtils.mulAndCheck(big, 2);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.mulAndCheck(bigNeg, 2);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMulAndCheckLong() {
|
||||
long max = Long.MAX_VALUE;
|
||||
long min = Long.MIN_VALUE;
|
||||
Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(max, 1L));
|
||||
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min, 1L));
|
||||
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(max, 0L));
|
||||
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(min, 0L));
|
||||
Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(1L, max));
|
||||
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(1L, min));
|
||||
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, max));
|
||||
Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, min));
|
||||
Assert.assertEquals(1L, ArithmeticsUtils.mulAndCheck(-1L, -1L));
|
||||
Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min / 2, 2));
|
||||
testMulAndCheckLongFailure(max, 2L);
|
||||
testMulAndCheckLongFailure(2L, max);
|
||||
testMulAndCheckLongFailure(min, 2L);
|
||||
testMulAndCheckLongFailure(2L, min);
|
||||
testMulAndCheckLongFailure(min, -1L);
|
||||
testMulAndCheckLongFailure(-1L, min);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubAndCheck() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
int bigNeg = Integer.MIN_VALUE;
|
||||
Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0));
|
||||
Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1));
|
||||
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big));
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(big, -1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(bigNeg, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubAndCheckErrorMessage() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(big, -1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
Assert.assertTrue(ex.getMessage().length() > 1);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubAndCheckLong() {
|
||||
long max = Long.MAX_VALUE;
|
||||
long min = Long.MIN_VALUE;
|
||||
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0));
|
||||
Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0));
|
||||
Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max));
|
||||
Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1));
|
||||
// min == -1-max
|
||||
Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max));
|
||||
Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max));
|
||||
testSubAndCheckLongFailure(0L, min);
|
||||
testSubAndCheckLongFailure(max, -1L);
|
||||
testSubAndCheckLongFailure(min, 1L);
|
||||
}
|
||||
|
||||
/**
|
||||
* Exact (caching) recursive implementation to test against
|
||||
*/
|
||||
private long binomialCoefficient(int n, int k) throws MathArithmeticException {
|
||||
if (binomialCache.size() > n) {
|
||||
Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k));
|
||||
if (cachedResult != null) {
|
||||
return cachedResult.longValue();
|
||||
}
|
||||
}
|
||||
long result = -1;
|
||||
if ((n == k) || (k == 0)) {
|
||||
result = 1;
|
||||
} else if ((k == 1) || (k == n - 1)) {
|
||||
result = n;
|
||||
} else {
|
||||
// Reduce stack depth for larger values of n
|
||||
if (k < n - 100) {
|
||||
binomialCoefficient(n - 100, k);
|
||||
}
|
||||
if (k > 100) {
|
||||
binomialCoefficient(n - 100, k - 100);
|
||||
}
|
||||
result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1),
|
||||
binomialCoefficient(n - 1, k));
|
||||
}
|
||||
if (result == -1) {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
for (int i = binomialCache.size(); i < n + 1; i++) {
|
||||
binomialCache.add(new HashMap<Integer, Long>());
|
||||
}
|
||||
binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result));
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Exact direct multiplication implementation to test against
|
||||
*/
|
||||
private long factorial(int n) {
|
||||
long result = 1;
|
||||
for (int i = 2; i <= n; i++) {
|
||||
result *= i;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private void testAddAndCheckLongFailure(long a, long b) {
|
||||
try {
|
||||
ArithmeticsUtils.addAndCheck(a, b);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
}
|
||||
}
|
||||
|
||||
private void testMulAndCheckLongFailure(long a, long b) {
|
||||
try {
|
||||
ArithmeticsUtils.mulAndCheck(a, b);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
}
|
||||
}
|
||||
|
||||
private void testSubAndCheckLongFailure(long a, long b) {
|
||||
try {
|
||||
ArithmeticsUtils.subAndCheck(a, b);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,11 +15,6 @@ package org.apache.commons.math.util;
|
|||
|
||||
import java.math.BigDecimal;
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
|
||||
import org.apache.commons.math.TestUtils;
|
||||
|
@ -38,219 +33,6 @@ import org.junit.Test;
|
|||
* 2007) $
|
||||
*/
|
||||
public final class MathUtilsTest {
|
||||
|
||||
/** cached binomial coefficients */
|
||||
private static final List<Map<Integer, Long>> binomialCache = new ArrayList<Map<Integer, Long>>();
|
||||
|
||||
/**
|
||||
* Exact (caching) recursive implementation to test against
|
||||
*/
|
||||
private long binomialCoefficient(int n, int k) throws MathArithmeticException {
|
||||
if (binomialCache.size() > n) {
|
||||
Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k));
|
||||
if (cachedResult != null) {
|
||||
return cachedResult.longValue();
|
||||
}
|
||||
}
|
||||
long result = -1;
|
||||
if ((n == k) || (k == 0)) {
|
||||
result = 1;
|
||||
} else if ((k == 1) || (k == n - 1)) {
|
||||
result = n;
|
||||
} else {
|
||||
// Reduce stack depth for larger values of n
|
||||
if (k < n - 100) {
|
||||
binomialCoefficient(n - 100, k);
|
||||
}
|
||||
if (k > 100) {
|
||||
binomialCoefficient(n - 100, k - 100);
|
||||
}
|
||||
result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1),
|
||||
binomialCoefficient(n - 1, k));
|
||||
}
|
||||
if (result == -1) {
|
||||
throw new MathArithmeticException();
|
||||
}
|
||||
for (int i = binomialCache.size(); i < n + 1; i++) {
|
||||
binomialCache.add(new HashMap<Integer, Long>());
|
||||
}
|
||||
binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result));
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Verify that b(0,0) = 1 */
|
||||
@Test
|
||||
public void test0Choose0() {
|
||||
Assert.assertEquals(MathUtils.binomialCoefficientDouble(0, 0), 1d, 0);
|
||||
Assert.assertEquals(MathUtils.binomialCoefficientLog(0, 0), 0d, 0);
|
||||
Assert.assertEquals(MathUtils.binomialCoefficient(0, 0), 1);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBinomialCoefficient() {
|
||||
long[] bcoef5 = {
|
||||
1,
|
||||
5,
|
||||
10,
|
||||
10,
|
||||
5,
|
||||
1 };
|
||||
long[] bcoef6 = {
|
||||
1,
|
||||
6,
|
||||
15,
|
||||
20,
|
||||
15,
|
||||
6,
|
||||
1 };
|
||||
for (int i = 0; i < 6; i++) {
|
||||
Assert.assertEquals("5 choose " + i, bcoef5[i], MathUtils.binomialCoefficient(5, i));
|
||||
}
|
||||
for (int i = 0; i < 7; i++) {
|
||||
Assert.assertEquals("6 choose " + i, bcoef6[i], MathUtils.binomialCoefficient(6, i));
|
||||
}
|
||||
|
||||
for (int n = 1; n < 10; n++) {
|
||||
for (int k = 0; k <= n; k++) {
|
||||
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficient(n, k));
|
||||
Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE);
|
||||
Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), MathUtils.binomialCoefficientLog(n, k), 10E-12);
|
||||
}
|
||||
}
|
||||
|
||||
int[] n = { 34, 66, 100, 1500, 1500 };
|
||||
int[] k = { 17, 33, 10, 1500 - 4, 4 };
|
||||
for (int i = 0; i < n.length; i++) {
|
||||
long expected = binomialCoefficient(n[i], k[i]);
|
||||
Assert.assertEquals(n[i] + " choose " + k[i], expected,
|
||||
MathUtils.binomialCoefficient(n[i], k[i]));
|
||||
Assert.assertEquals(n[i] + " choose " + k[i], expected,
|
||||
MathUtils.binomialCoefficientDouble(n[i], k[i]), 0.0);
|
||||
Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected),
|
||||
MathUtils.binomialCoefficientLog(n[i], k[i]), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests correctness for large n and sharpness of upper bound in API doc
|
||||
* JIRA: MATH-241
|
||||
*/
|
||||
@Test
|
||||
public void testBinomialCoefficientLarge() throws Exception {
|
||||
// This tests all legal and illegal values for n <= 200.
|
||||
for (int n = 0; n <= 200; n++) {
|
||||
for (int k = 0; k <= n; k++) {
|
||||
long ourResult = -1;
|
||||
long exactResult = -1;
|
||||
boolean shouldThrow = false;
|
||||
boolean didThrow = false;
|
||||
try {
|
||||
ourResult = MathUtils.binomialCoefficient(n, k);
|
||||
} catch (MathArithmeticException ex) {
|
||||
didThrow = true;
|
||||
}
|
||||
try {
|
||||
exactResult = binomialCoefficient(n, k);
|
||||
} catch (MathArithmeticException ex) {
|
||||
shouldThrow = true;
|
||||
}
|
||||
Assert.assertEquals(n + " choose " + k, exactResult, ourResult);
|
||||
Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow);
|
||||
Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow));
|
||||
|
||||
if (!shouldThrow && exactResult > 1) {
|
||||
Assert.assertEquals(n + " choose " + k, 1.,
|
||||
MathUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10);
|
||||
Assert.assertEquals(n + " choose " + k, 1,
|
||||
MathUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
long ourResult = MathUtils.binomialCoefficient(300, 3);
|
||||
long exactResult = binomialCoefficient(300, 3);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
|
||||
ourResult = MathUtils.binomialCoefficient(700, 697);
|
||||
exactResult = binomialCoefficient(700, 697);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
|
||||
// This one should throw
|
||||
try {
|
||||
MathUtils.binomialCoefficient(700, 300);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// Expected
|
||||
}
|
||||
|
||||
int n = 10000;
|
||||
ourResult = MathUtils.binomialCoefficient(n, 3);
|
||||
exactResult = binomialCoefficient(n, 3);
|
||||
Assert.assertEquals(exactResult, ourResult);
|
||||
Assert.assertEquals(1, MathUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10);
|
||||
Assert.assertEquals(1, MathUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBinomialCoefficientFail() {
|
||||
try {
|
||||
MathUtils.binomialCoefficient(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
MathUtils.binomialCoefficientDouble(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
MathUtils.binomialCoefficientLog(4, 5);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
MathUtils.binomialCoefficient(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
MathUtils.binomialCoefficientDouble(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
MathUtils.binomialCoefficientLog(-1, -2);
|
||||
Assert.fail("expecting MathIllegalArgumentException");
|
||||
} catch (MathIllegalArgumentException ex) {
|
||||
// ignored
|
||||
}
|
||||
|
||||
try {
|
||||
MathUtils.binomialCoefficient(67, 30);
|
||||
Assert.fail("expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// ignored
|
||||
}
|
||||
try {
|
||||
MathUtils.binomialCoefficient(67, 34);
|
||||
Assert.fail("expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// ignored
|
||||
}
|
||||
double x = MathUtils.binomialCoefficientDouble(1030, 515);
|
||||
Assert.assertTrue("expecting infinite binomial coefficient", Double
|
||||
.isInfinite(x));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCosh() {
|
||||
double x = 3.0;
|
||||
|
@ -380,104 +162,6 @@ public final class MathUtilsTest {
|
|||
Assert.assertEquals((short)(-1), MathUtils.indicator((short)(-2)));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLcm() {
|
||||
int a = 30;
|
||||
int b = 50;
|
||||
int c = 77;
|
||||
|
||||
Assert.assertEquals(0, MathUtils.lcm(0, b));
|
||||
Assert.assertEquals(0, MathUtils.lcm(a, 0));
|
||||
Assert.assertEquals(b, MathUtils.lcm(1, b));
|
||||
Assert.assertEquals(a, MathUtils.lcm(a, 1));
|
||||
Assert.assertEquals(150, MathUtils.lcm(a, b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(-a, b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(a, -b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(-a, -b));
|
||||
Assert.assertEquals(2310, MathUtils.lcm(a, c));
|
||||
|
||||
// Assert that no intermediate value overflows:
|
||||
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
|
||||
Assert.assertEquals((1<<20)*15, MathUtils.lcm((1<<20)*3, (1<<20)*5));
|
||||
|
||||
// Special case
|
||||
Assert.assertEquals(0, MathUtils.lcm(0, 0));
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
MathUtils.lcm(Integer.MIN_VALUE, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
MathUtils.lcm(Integer.MIN_VALUE, 1<<20);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
try {
|
||||
MathUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLcmLong() {
|
||||
long a = 30;
|
||||
long b = 50;
|
||||
long c = 77;
|
||||
|
||||
Assert.assertEquals(0, MathUtils.lcm(0, b));
|
||||
Assert.assertEquals(0, MathUtils.lcm(a, 0));
|
||||
Assert.assertEquals(b, MathUtils.lcm(1, b));
|
||||
Assert.assertEquals(a, MathUtils.lcm(a, 1));
|
||||
Assert.assertEquals(150, MathUtils.lcm(a, b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(-a, b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(a, -b));
|
||||
Assert.assertEquals(150, MathUtils.lcm(-a, -b));
|
||||
Assert.assertEquals(2310, MathUtils.lcm(a, c));
|
||||
|
||||
Assert.assertEquals(Long.MAX_VALUE, MathUtils.lcm(60247241209L, 153092023L));
|
||||
|
||||
// Assert that no intermediate value overflows:
|
||||
// The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b)
|
||||
Assert.assertEquals((1L<<50)*15, MathUtils.lcm((1L<<45)*3, (1L<<50)*5));
|
||||
|
||||
// Special case
|
||||
Assert.assertEquals(0L, MathUtils.lcm(0L, 0L));
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
MathUtils.lcm(Long.MIN_VALUE, 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
try {
|
||||
// lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int
|
||||
MathUtils.lcm(Long.MIN_VALUE, 1<<20);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
|
||||
Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1),
|
||||
MathUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1));
|
||||
try {
|
||||
MathUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException expected) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLog() {
|
||||
Assert.assertEquals(2.0, MathUtils.log(2, 4), 0);
|
||||
|
@ -489,54 +173,6 @@ public final class MathUtilsTest {
|
|||
Assert.assertEquals(Double.NEGATIVE_INFINITY, MathUtils.log(10, 0), 0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMulAndCheck() {
|
||||
int big = Integer.MAX_VALUE;
|
||||
int bigNeg = Integer.MIN_VALUE;
|
||||
Assert.assertEquals(big, MathUtils.mulAndCheck(big, 1));
|
||||
try {
|
||||
MathUtils.mulAndCheck(big, 2);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
try {
|
||||
MathUtils.mulAndCheck(bigNeg, 2);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMulAndCheckLong() {
|
||||
long max = Long.MAX_VALUE;
|
||||
long min = Long.MIN_VALUE;
|
||||
Assert.assertEquals(max, MathUtils.mulAndCheck(max, 1L));
|
||||
Assert.assertEquals(min, MathUtils.mulAndCheck(min, 1L));
|
||||
Assert.assertEquals(0L, MathUtils.mulAndCheck(max, 0L));
|
||||
Assert.assertEquals(0L, MathUtils.mulAndCheck(min, 0L));
|
||||
Assert.assertEquals(max, MathUtils.mulAndCheck(1L, max));
|
||||
Assert.assertEquals(min, MathUtils.mulAndCheck(1L, min));
|
||||
Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, max));
|
||||
Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, min));
|
||||
Assert.assertEquals(1L, MathUtils.mulAndCheck(-1L, -1L));
|
||||
Assert.assertEquals(min, MathUtils.mulAndCheck(min / 2, 2));
|
||||
testMulAndCheckLongFailure(max, 2L);
|
||||
testMulAndCheckLongFailure(2L, max);
|
||||
testMulAndCheckLongFailure(min, 2L);
|
||||
testMulAndCheckLongFailure(2L, min);
|
||||
testMulAndCheckLongFailure(min, -1L);
|
||||
testMulAndCheckLongFailure(-1L, min);
|
||||
}
|
||||
|
||||
private void testMulAndCheckLongFailure(long a, long b) {
|
||||
try {
|
||||
MathUtils.mulAndCheck(a, b);
|
||||
Assert.fail("Expecting MathArithmeticException");
|
||||
} catch (MathArithmeticException ex) {
|
||||
// success
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNormalizeAngle() {
|
||||
for (double a = -15.0; a <= 15.0; a += 0.1) {
|
||||
|
|
Loading…
Reference in New Issue