MATH-1524 Move "chooseInitialCenters" out of the KMeansPlusPlusClusterer
This commit is contained in:
parent
aeca88c72d
commit
84102c0c4c
|
@ -26,6 +26,8 @@ import org.apache.commons.math4.exception.ConvergenceException;
|
|||
import org.apache.commons.math4.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.ml.clustering.initialization.CentroidInitializer;
|
||||
import org.apache.commons.math4.ml.clustering.initialization.KMeansPlusPlusCentroidInitializer;
|
||||
import org.apache.commons.math4.ml.distance.DistanceMeasure;
|
||||
import org.apache.commons.math4.ml.distance.EuclideanDistance;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
|
@ -70,6 +72,9 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
/** Selected strategy for empty clusters. */
|
||||
private final EmptyClusterStrategy emptyStrategy;
|
||||
|
||||
/** Clusters centroids initializer. */
|
||||
private final CentroidInitializer centroidInitializer;
|
||||
|
||||
/** Build a clusterer.
|
||||
* <p>
|
||||
* The default strategy for handling empty clusters that may appear during
|
||||
|
@ -148,6 +153,8 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
this.maxIterations = maxIterations;
|
||||
this.random = random;
|
||||
this.emptyStrategy = emptyStrategy;
|
||||
// Use K-means++ to choose the initial centers.
|
||||
this.centroidInitializer = new KMeansPlusPlusCentroidInitializer(measure, random);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -203,7 +210,7 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
}
|
||||
|
||||
// create the initial clusters
|
||||
List<CentroidCluster<T>> clusters = chooseInitialCenters(points);
|
||||
List<CentroidCluster<T>> clusters = centroidInitializer.selectCentroids(points, k);
|
||||
|
||||
// create an array containing the latest assignment of a point to a cluster
|
||||
// no need to initialize the array, as it will be filled with the first assignment
|
||||
|
@ -276,131 +283,6 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
return assignedDifferently;
|
||||
}
|
||||
|
||||
/**
|
||||
* Use K-means++ to choose the initial centers.
|
||||
*
|
||||
* @param points the points to choose the initial centers from
|
||||
* @return the initial centers
|
||||
*/
|
||||
private List<CentroidCluster<T>> chooseInitialCenters(final Collection<T> points) {
|
||||
|
||||
// Convert to list for indexed access. Make it unmodifiable, since removal of items
|
||||
// would screw up the logic of this method.
|
||||
final List<T> pointList = Collections.unmodifiableList(new ArrayList<> (points));
|
||||
|
||||
// The number of points in the list.
|
||||
final int numPoints = pointList.size();
|
||||
|
||||
// Set the corresponding element in this array to indicate when
|
||||
// elements of pointList are no longer available.
|
||||
final boolean[] taken = new boolean[numPoints];
|
||||
|
||||
// The resulting list of initial centers.
|
||||
final List<CentroidCluster<T>> resultSet = new ArrayList<>();
|
||||
|
||||
// Choose one center uniformly at random from among the data points.
|
||||
final int firstPointIndex = random.nextInt(numPoints);
|
||||
|
||||
final T firstPoint = pointList.get(firstPointIndex);
|
||||
|
||||
resultSet.add(new CentroidCluster<T>(firstPoint));
|
||||
|
||||
// Must mark it as taken
|
||||
taken[firstPointIndex] = true;
|
||||
|
||||
// To keep track of the minimum distance squared of elements of
|
||||
// pointList to elements of resultSet.
|
||||
final double[] minDistSquared = new double[numPoints];
|
||||
|
||||
// Initialize the elements. Since the only point in resultSet is firstPoint,
|
||||
// this is very easy.
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (i != firstPointIndex) { // That point isn't considered
|
||||
double d = distance(firstPoint, pointList.get(i));
|
||||
minDistSquared[i] = d*d;
|
||||
}
|
||||
}
|
||||
|
||||
while (resultSet.size() < k) {
|
||||
|
||||
// Sum up the squared distances for the points in pointList not
|
||||
// already taken.
|
||||
double distSqSum = 0.0;
|
||||
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
distSqSum += minDistSquared[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Add one new data point as a center. Each point x is chosen with
|
||||
// probability proportional to D(x)2
|
||||
final double r = random.nextDouble() * distSqSum;
|
||||
|
||||
// The index of the next point to be added to the resultSet.
|
||||
int nextPointIndex = -1;
|
||||
|
||||
// Sum through the squared min distances again, stopping when
|
||||
// sum >= r.
|
||||
double sum = 0.0;
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
sum += minDistSquared[i];
|
||||
if (sum >= r) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If it's not set to >= 0, the point wasn't found in the previous
|
||||
// for loop, probably because distances are extremely small. Just pick
|
||||
// the last available point.
|
||||
if (nextPointIndex == -1) {
|
||||
for (int i = numPoints - 1; i >= 0; i--) {
|
||||
if (!taken[i]) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We found one.
|
||||
if (nextPointIndex >= 0) {
|
||||
|
||||
final T p = pointList.get(nextPointIndex);
|
||||
|
||||
resultSet.add(new CentroidCluster<T> (p));
|
||||
|
||||
// Mark it as taken.
|
||||
taken[nextPointIndex] = true;
|
||||
|
||||
if (resultSet.size() < k) {
|
||||
// Now update elements of minDistSquared. We only have to compute
|
||||
// the distance to the new center to do this.
|
||||
for (int j = 0; j < numPoints; j++) {
|
||||
// Only have to worry about the points still not taken.
|
||||
if (!taken[j]) {
|
||||
double d = distance(p, pointList.get(j));
|
||||
double d2 = d * d;
|
||||
if (d2 < minDistSquared[j]) {
|
||||
minDistSquared[j] = d2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// None found --
|
||||
// Break from the while loop to prevent
|
||||
// an infinite loop.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return resultSet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a random point from the {@link Cluster} with the largest distance variance.
|
||||
*
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ml.clustering.initialization;
|
||||
|
||||
import org.apache.commons.math4.ml.clustering.CentroidCluster;
|
||||
import org.apache.commons.math4.ml.clustering.Clusterable;
|
||||
|
||||
import java.util.Collection;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Interface abstract the algorithm for clusterer to choose the initial centers.
|
||||
*/
|
||||
public interface CentroidInitializer {
|
||||
|
||||
/**
|
||||
* Choose the initial centers.
|
||||
*
|
||||
* @param points the points to choose the initial centers from
|
||||
* @param k The number of clusters
|
||||
* @return the initial centers
|
||||
*/
|
||||
<T extends Clusterable> List<CentroidCluster<T>> selectCentroids(final Collection<T> points, final int k);
|
||||
}
|
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ml.clustering.initialization;
|
||||
|
||||
import org.apache.commons.math4.ml.clustering.CentroidCluster;
|
||||
import org.apache.commons.math4.ml.clustering.Clusterable;
|
||||
import org.apache.commons.math4.ml.distance.DistanceMeasure;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Use K-means++ to choose the initial centers.
|
||||
*
|
||||
* @see <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">K-means++ (wikipedia)</a>
|
||||
*/
|
||||
public class KMeansPlusPlusCentroidInitializer implements CentroidInitializer {
|
||||
private final DistanceMeasure measure;
|
||||
private final UniformRandomProvider random;
|
||||
|
||||
/**
|
||||
* Build a K-means++ CentroidInitializer
|
||||
* @param measure the distance measure to use
|
||||
* @param random the random to use.
|
||||
*/
|
||||
public KMeansPlusPlusCentroidInitializer(final DistanceMeasure measure, final UniformRandomProvider random) {
|
||||
this.measure = measure;
|
||||
this.random = random;
|
||||
}
|
||||
|
||||
/**
|
||||
* Use K-means++ to choose the initial centers.
|
||||
*
|
||||
* @param points the points to choose the initial centers from
|
||||
* @param k The number of clusters
|
||||
* @return the initial centers
|
||||
*/
|
||||
@Override
|
||||
public <T extends Clusterable> List<CentroidCluster<T>> selectCentroids(final Collection<T> points, final int k) {
|
||||
// Convert to list for indexed access. Make it unmodifiable, since removal of items
|
||||
// would screw up the logic of this method.
|
||||
final List<T> pointList = Collections.unmodifiableList(new ArrayList<>(points));
|
||||
|
||||
// The number of points in the list.
|
||||
final int numPoints = pointList.size();
|
||||
|
||||
// Set the corresponding element in this array to indicate when
|
||||
// elements of pointList are no longer available.
|
||||
final boolean[] taken = new boolean[numPoints];
|
||||
|
||||
// The resulting list of initial centers.
|
||||
final List<CentroidCluster<T>> resultSet = new ArrayList<>();
|
||||
|
||||
// Choose one center uniformly at random from among the data points.
|
||||
final int firstPointIndex = random.nextInt(numPoints);
|
||||
|
||||
final T firstPoint = pointList.get(firstPointIndex);
|
||||
|
||||
resultSet.add(new CentroidCluster<>(firstPoint));
|
||||
|
||||
// Must mark it as taken
|
||||
taken[firstPointIndex] = true;
|
||||
|
||||
// To keep track of the minimum distance squared of elements of
|
||||
// pointList to elements of resultSet.
|
||||
final double[] minDistSquared = new double[numPoints];
|
||||
|
||||
// Initialize the elements. Since the only point in resultSet is firstPoint,
|
||||
// this is very easy.
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (i != firstPointIndex) { // That point isn't considered
|
||||
double d = distance(firstPoint, pointList.get(i));
|
||||
minDistSquared[i] = d * d;
|
||||
}
|
||||
}
|
||||
|
||||
while (resultSet.size() < k) {
|
||||
|
||||
// Sum up the squared distances for the points in pointList not
|
||||
// already taken.
|
||||
double distSqSum = 0.0;
|
||||
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
distSqSum += minDistSquared[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Add one new data point as a center. Each point x is chosen with
|
||||
// probability proportional to D(x)2
|
||||
final double r = random.nextDouble() * distSqSum;
|
||||
|
||||
// The index of the next point to be added to the resultSet.
|
||||
int nextPointIndex = -1;
|
||||
|
||||
// Sum through the squared min distances again, stopping when
|
||||
// sum >= r.
|
||||
double sum = 0.0;
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
sum += minDistSquared[i];
|
||||
if (sum >= r) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If it's not set to >= 0, the point wasn't found in the previous
|
||||
// for loop, probably because distances are extremely small. Just pick
|
||||
// the last available point.
|
||||
if (nextPointIndex == -1) {
|
||||
for (int i = numPoints - 1; i >= 0; i--) {
|
||||
if (!taken[i]) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We found one.
|
||||
if (nextPointIndex >= 0) {
|
||||
|
||||
final T p = pointList.get(nextPointIndex);
|
||||
|
||||
resultSet.add(new CentroidCluster<>(p));
|
||||
|
||||
// Mark it as taken.
|
||||
taken[nextPointIndex] = true;
|
||||
|
||||
if (resultSet.size() < k) {
|
||||
// Now update elements of minDistSquared. We only have to compute
|
||||
// the distance to the new center to do this.
|
||||
for (int j = 0; j < numPoints; j++) {
|
||||
// Only have to worry about the points still not taken.
|
||||
if (!taken[j]) {
|
||||
double d = distance(p, pointList.get(j));
|
||||
double d2 = d * d;
|
||||
if (d2 < minDistSquared[j]) {
|
||||
minDistSquared[j] = d2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// None found --
|
||||
// Break from the while loop to prevent
|
||||
// an infinite loop.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return resultSet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the distance between two {@link Clusterable} instances
|
||||
* with the configured {@link DistanceMeasure}.
|
||||
*
|
||||
* @param p1 the first clusterable
|
||||
* @param p2 the second clusterable
|
||||
* @return the distance between the two clusterables
|
||||
*/
|
||||
protected double distance(final Clusterable p1, final Clusterable p2) {
|
||||
return measure.compute(p1.getPoint(), p2.getPoint());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,65 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ml.clustering.initialization;
|
||||
|
||||
import org.apache.commons.math4.ml.clustering.CentroidCluster;
|
||||
import org.apache.commons.math4.ml.clustering.Clusterable;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.sampling.ListSampler;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Random choose the initial centers.
|
||||
*/
|
||||
public class RandomCentroidInitializer implements CentroidInitializer {
|
||||
private final UniformRandomProvider random;
|
||||
|
||||
/**
|
||||
* Build a random RandomCentroidInitializer
|
||||
*
|
||||
* @param random the random to use.
|
||||
*/
|
||||
public RandomCentroidInitializer(final UniformRandomProvider random) {
|
||||
this.random = random;
|
||||
}
|
||||
|
||||
/**
|
||||
* Random choose the initial centers.
|
||||
*
|
||||
* @param points the points to choose the initial centers from
|
||||
* @param k The number of clusters
|
||||
* @return the initial centers
|
||||
*/
|
||||
@Override
|
||||
public <T extends Clusterable> List<CentroidCluster<T>> selectCentroids(final Collection<T> points, final int k) {
|
||||
if (k < 1) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
final ArrayList<T> list = new ArrayList<>(points);
|
||||
ListSampler.shuffle(random, list);
|
||||
final List<CentroidCluster<T>> result = new ArrayList<>(k);
|
||||
for (int i = 0; i < k; i++) {
|
||||
result.add(new CentroidCluster<>(list.get(i)));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,49 @@
|
|||
package org.apache.commons.math4.ml.clustering.initialization;
|
||||
|
||||
import org.apache.commons.math4.ml.clustering.CentroidCluster;
|
||||
import org.apache.commons.math4.ml.clustering.DoublePoint;
|
||||
import org.apache.commons.math4.ml.distance.EuclideanDistance;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
public class CentroidInitializerTest {
|
||||
private void test_generate_appropriate_number_of_cluster(
|
||||
final CentroidInitializer initializer) {
|
||||
// Generate some data
|
||||
final List<DoublePoint> points = new ArrayList<>();
|
||||
final UniformRandomProvider rnd = RandomSource.create(RandomSource.MT_64);
|
||||
for (int i = 0; i < 500; i++) {
|
||||
double[] p = new double[2];
|
||||
p[0] = rnd.nextDouble();
|
||||
p[1] = rnd.nextDouble();
|
||||
points.add(new DoublePoint(p));
|
||||
}
|
||||
// We can only assert that the centroid initializer
|
||||
// implementation generate appropriate number of cluster
|
||||
for (int k = 1; k < 50; k++) {
|
||||
final List<CentroidCluster<DoublePoint>> centroidClusters =
|
||||
initializer.selectCentroids(points, k);
|
||||
Assert.assertEquals(k, centroidClusters.size());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_RandomCentroidInitializer() {
|
||||
final CentroidInitializer initializer =
|
||||
new RandomCentroidInitializer(RandomSource.create(RandomSource.MT_64));
|
||||
test_generate_appropriate_number_of_cluster(initializer);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_KMeanPlusPlusCentroidInitializer() {
|
||||
final CentroidInitializer initializer =
|
||||
new KMeansPlusPlusCentroidInitializer(new EuclideanDistance(),
|
||||
RandomSource.create(RandomSource.MT_64));
|
||||
test_generate_appropriate_number_of_cluster(initializer);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue