mirror of
https://github.com/apache/commons-math.git
synced 2025-03-05 16:09:09 +00:00
removed deprecated methods
this does not belong to commons-math yet, but will probably be merged some day git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_0@651259 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
c29768da8d
commit
8c206f6225
@ -73,65 +73,6 @@ public class HarmonicFitter
|
||||
firstGuessNeeded = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
* @param maxIterations maximum number of iterations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has reached a steady state (read converged) if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
* @param epsilon threshold under which the matrix of the linearized
|
||||
* problem is considered singular (see {@link
|
||||
* org.spaceroots.mantissa.linalg.SquareMatrix#solve(
|
||||
* org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
|
||||
* @deprecated replaced by {@link #HarmonicFitter(Estimator)}
|
||||
* as of version 7.0
|
||||
*/
|
||||
public HarmonicFitter(int maxIterations, double convergence,
|
||||
double steadyStateThreshold, double epsilon) {
|
||||
this(new GaussNewtonEstimator(maxIterations, convergence,
|
||||
steadyStateThreshold, epsilon));
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
|
||||
* <p>This constructor can be used when a first estimate of the
|
||||
* coefficients is already known.</p>
|
||||
|
||||
* @param coefficients first estimate of the coefficients.
|
||||
* A reference to this array is hold by the newly created
|
||||
* object. Its elements will be adjusted during the fitting process
|
||||
* and they will be set to the adjusted coefficients at the end.
|
||||
* @param maxIterations maximum number of iterations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has reached a steady state (read converged) if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
* @param epsilon threshold under which the matrix of the linearized
|
||||
* problem is considered singular (see {@link
|
||||
* org.spaceroots.mantissa.linalg.SquareMatrix#solve(
|
||||
* org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
|
||||
|
||||
* @deprecated replaced by {@link #HarmonicFitter(EstimatedParameter[],
|
||||
* Estimator)} as of version 7.0
|
||||
*/
|
||||
public HarmonicFitter(EstimatedParameter[] coefficients,
|
||||
int maxIterations, double convergence,
|
||||
double steadyStateThreshold, double epsilon) {
|
||||
this(coefficients,
|
||||
new GaussNewtonEstimator(maxIterations, convergence,
|
||||
steadyStateThreshold, epsilon));
|
||||
}
|
||||
|
||||
public double[] fit()
|
||||
throws EstimationException {
|
||||
if (firstGuessNeeded) {
|
||||
|
@ -78,78 +78,6 @@ public class PolynomialFitter
|
||||
super(coefficients, estimator);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
|
||||
* <p>The polynomial fitter built this way are complete polynoms,
|
||||
* ie. a n-degree polynom has n+1 coefficients. In order to build
|
||||
* fitter for sparse polynoms (for example <code>a x^20 - b
|
||||
* x^30</code>, on should first build the coefficients array and
|
||||
* provide it to {@link
|
||||
* #PolynomialFitter(PolynomialCoefficient[], int, double, double,
|
||||
* double)}.</p>
|
||||
* @param degree maximal degree of the polynom
|
||||
* @param maxIterations maximum number of iterations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has reached a steady state (read converged) if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
* @param epsilon threshold under which the matrix of the linearized
|
||||
* problem is considered singular (see {@link
|
||||
* org.spaceroots.mantissa.linalg.SquareMatrix#solve(
|
||||
* org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
|
||||
|
||||
* @deprecated replaced by {@link #PolynomialFitter(int,Estimator)}
|
||||
* as of version 7.0
|
||||
*/
|
||||
public PolynomialFitter(int degree,
|
||||
int maxIterations, double convergence,
|
||||
double steadyStateThreshold, double epsilon) {
|
||||
this(degree,
|
||||
new GaussNewtonEstimator(maxIterations, steadyStateThreshold,
|
||||
convergence, epsilon));
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
|
||||
* <p>This constructor can be used either when a first estimate of
|
||||
* the coefficients is already known (which is of little interest
|
||||
* because the fit cost is the same whether a first guess is known or
|
||||
* not) or when one needs to handle sparse polynoms like <code>a
|
||||
* x^20 - b x^30</code>.</p>
|
||||
|
||||
* @param coefficients first estimate of the coefficients.
|
||||
* A reference to this array is hold by the newly created
|
||||
* object. Its elements will be adjusted during the fitting process
|
||||
* and they will be set to the adjusted coefficients at the end.
|
||||
* @param maxIterations maximum number of iterations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has reached a steady state (read converged) if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
* @param epsilon threshold under which the matrix of the linearized
|
||||
* problem is considered singular (see {@link
|
||||
* org.spaceroots.mantissa.linalg.SquareMatrix#solve(
|
||||
* org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
|
||||
|
||||
* @deprecated replaced by {@link #PolynomialFitter(PolynomialCoefficient[],
|
||||
* Estimator)} as of version 7.0
|
||||
*/
|
||||
public PolynomialFitter(PolynomialCoefficient[] coefficients,
|
||||
int maxIterations, double convergence,
|
||||
double steadyStateThreshold, double epsilon) {
|
||||
this(coefficients,
|
||||
new GaussNewtonEstimator(maxIterations, steadyStateThreshold,
|
||||
convergence, epsilon));
|
||||
}
|
||||
|
||||
/** Get the value of the function at x according to the current parameters value.
|
||||
* @param x abscissa at which the theoretical value is requested
|
||||
* @return theoretical value at x
|
||||
|
Loading…
x
Reference in New Issue
Block a user