Added @since tags.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@925812 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2010-03-21 15:49:31 +00:00
parent 332f3909cc
commit 8cb2563a2c
23 changed files with 115 additions and 21 deletions

View File

@ -32,10 +32,15 @@ import org.apache.commons.math.analysis.UnivariateRealFunction;
*/ */
public class BrentSolver extends UnivariateRealSolverImpl { public class BrentSolver extends UnivariateRealSolverImpl {
/** Default absolute accuracy */ /**
* Default absolute accuracy
* @since 2.1
*/
public static final double DEFAULT_ABSOLUTE_ACCURACY = 1E-6; public static final double DEFAULT_ABSOLUTE_ACCURACY = 1E-6;
/** Default maximum number of iterations */ /** Default maximum number of iterations
* @since 2.1
*/
public static final int DEFAULT_MAXIMUM_ITERATIONS = 100; public static final int DEFAULT_MAXIMUM_ITERATIONS = 100;
/** Error message for non-bracketing interval. */ /** Error message for non-bracketing interval. */
@ -71,6 +76,7 @@ public class BrentSolver extends UnivariateRealSolverImpl {
* Construct a solver with the given absolute accuracy. * Construct a solver with the given absolute accuracy.
* *
* @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
* @since 2.1
*/ */
public BrentSolver(double absoluteAccuracy) { public BrentSolver(double absoluteAccuracy) {
super(DEFAULT_MAXIMUM_ITERATIONS, absoluteAccuracy); super(DEFAULT_MAXIMUM_ITERATIONS, absoluteAccuracy);
@ -81,6 +87,7 @@ public class BrentSolver extends UnivariateRealSolverImpl {
* *
* @param maximumIterations maximum number of iterations * @param maximumIterations maximum number of iterations
* @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
* @since 2.1
*/ */
public BrentSolver(int maximumIterations, double absoluteAccuracy) { public BrentSolver(int maximumIterations, double absoluteAccuracy) {
super(maximumIterations, absoluteAccuracy); super(maximumIterations, absoluteAccuracy);

View File

@ -40,7 +40,10 @@ public abstract class AbstractContinuousDistribution
/** Serializable version identifier */ /** Serializable version identifier */
private static final long serialVersionUID = -38038050983108802L; private static final long serialVersionUID = -38038050983108802L;
/** Solver absolute accuracy for inverse cum computation */ /**
* Solver absolute accuracy for inverse cum computation
* @since 2.1
*/
private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY; private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY;
/** /**
@ -55,6 +58,7 @@ public abstract class AbstractContinuousDistribution
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @throws MathRuntimeException if the specialized class hasn't implemented this function * @throws MathRuntimeException if the specialized class hasn't implemented this function
* @since 2.1
*/ */
public double density(double x) throws MathRuntimeException { public double density(double x) throws MathRuntimeException {
throw new MathRuntimeException(new UnsupportedOperationException(), throw new MathRuntimeException(new UnsupportedOperationException(),
@ -166,6 +170,7 @@ public abstract class AbstractContinuousDistribution
* Returns the solver absolute accuracy for inverse cum computation. * Returns the solver absolute accuracy for inverse cum computation.
* *
* @return the maximum absolute error in inverse cumulative probability estimates * @return the maximum absolute error in inverse cumulative probability estimates
* @since 2.1
*/ */
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {
return solverAbsoluteAccuracy; return solverAbsoluteAccuracy;

View File

@ -114,6 +114,7 @@ public class BetaDistributionImpl
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
public double density(double x) { public double density(double x) {
recomputeZ(); recomputeZ();

View File

@ -89,6 +89,7 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {

View File

@ -29,7 +29,10 @@ public class ChiSquaredDistributionImpl
extends AbstractContinuousDistribution extends AbstractContinuousDistribution
implements ChiSquaredDistribution, Serializable { implements ChiSquaredDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accuracy
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier */ /** Serializable version identifier */
@ -71,6 +74,7 @@ public class ChiSquaredDistributionImpl
* @param df degrees of freedom. * @param df degrees of freedom.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/ */
public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy) { public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy) {
super(); super();
@ -120,6 +124,7 @@ public class ChiSquaredDistributionImpl
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {
@ -257,6 +262,7 @@ public class ChiSquaredDistributionImpl
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -91,6 +91,7 @@ public class ExponentialDistributionImpl extends AbstractContinuousDistribution
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {

View File

@ -32,7 +32,10 @@ public class FDistributionImpl
extends AbstractContinuousDistribution extends AbstractContinuousDistribution
implements FDistribution, Serializable { implements FDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accurac
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Message for non positive degrees of freddom. */ /** Message for non positive degrees of freddom. */
@ -67,6 +70,7 @@ public class FDistributionImpl
* @param denominatorDegreesOfFreedom the denominator degrees of freedom. * @param denominatorDegreesOfFreedom the denominator degrees of freedom.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/ */
public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom,
double inverseCumAccuracy) { double inverseCumAccuracy) {
@ -81,6 +85,7 @@ public class FDistributionImpl
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {
@ -269,6 +274,7 @@ public class FDistributionImpl
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -30,7 +30,10 @@ import org.apache.commons.math.special.Gamma;
public class GammaDistributionImpl extends AbstractContinuousDistribution public class GammaDistributionImpl extends AbstractContinuousDistribution
implements GammaDistribution, Serializable { implements GammaDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accuracy
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier */ /** Serializable version identifier */
@ -60,6 +63,7 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
* @param beta the scale parameter. * @param beta the scale parameter.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/ */
public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
super(); super();
@ -285,6 +289,7 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -33,7 +33,10 @@ import org.apache.commons.math.special.Erf;
public class NormalDistributionImpl extends AbstractContinuousDistribution public class NormalDistributionImpl extends AbstractContinuousDistribution
implements NormalDistribution, Serializable { implements NormalDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accuracy
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier */ /** Serializable version identifier */
@ -67,6 +70,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
* @param mean mean for this distribution * @param mean mean for this distribution
* @param sd standard deviation for this distribution * @param sd standard deviation for this distribution
* @param inverseCumAccuracy inverse cumulative probability accuracy * @param inverseCumAccuracy inverse cumulative probability accuracy
* @since 2.1
*/ */
public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy) { public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy) {
super(); super();
@ -156,6 +160,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
public double density(double x) { public double density(double x) {
double x0 = x - mean; double x0 = x - mean;
@ -190,6 +195,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -33,11 +33,13 @@ public class PoissonDistributionImpl extends AbstractIntegerDistribution
/** /**
* Default maximum number of iterations for cumulative probability calculations. * Default maximum number of iterations for cumulative probability calculations.
* @since 2.1
*/ */
public static final int DEFAULT_MAX_ITERATIONS = 10000000; public static final int DEFAULT_MAX_ITERATIONS = 10000000;
/** /**
* Default convergence criterion * Default convergence criterion.
* @since 2.1
*/ */
public static final double DEFAULT_EPSILON = 1E-12; public static final double DEFAULT_EPSILON = 1E-12;
@ -83,6 +85,7 @@ public class PoissonDistributionImpl extends AbstractIntegerDistribution
* @param p the Poisson mean * @param p the Poisson mean
* @param epsilon the convergence criteria for cumulative probabilites * @param epsilon the convergence criteria for cumulative probabilites
* @param maxIterations the maximum number of iterations for cumulative probabilites * @param maxIterations the maximum number of iterations for cumulative probabilites
* @since 2.1
*/ */
public PoissonDistributionImpl(double p, double epsilon, int maxIterations) { public PoissonDistributionImpl(double p, double epsilon, int maxIterations) {
setMean(p); setMean(p);
@ -95,6 +98,7 @@ public class PoissonDistributionImpl extends AbstractIntegerDistribution
* *
* @param p the Poisson mean * @param p the Poisson mean
* @param epsilon the convergence criteria for cumulative probabilites * @param epsilon the convergence criteria for cumulative probabilites
* @since 2.1
*/ */
public PoissonDistributionImpl(double p, double epsilon) { public PoissonDistributionImpl(double p, double epsilon) {
setMean(p); setMean(p);
@ -106,6 +110,7 @@ public class PoissonDistributionImpl extends AbstractIntegerDistribution
* *
* @param p the Poisson mean * @param p the Poisson mean
* @param maxIterations the maximum number of iterations for cumulative probabilites * @param maxIterations the maximum number of iterations for cumulative probabilites
* @since 2.1
*/ */
public PoissonDistributionImpl(double p, int maxIterations) { public PoissonDistributionImpl(double p, int maxIterations) {
setMean(p); setMean(p);

View File

@ -33,7 +33,10 @@ public class TDistributionImpl
extends AbstractContinuousDistribution extends AbstractContinuousDistribution
implements TDistribution, Serializable { implements TDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accuracy
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier */ /** Serializable version identifier */
@ -52,6 +55,7 @@ public class TDistributionImpl
* @param degreesOfFreedom the degrees of freedom. * @param degreesOfFreedom the degrees of freedom.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/ */
public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) { public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) {
super(); super();
@ -102,6 +106,7 @@ public class TDistributionImpl
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {
@ -210,6 +215,7 @@ public class TDistributionImpl
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -31,7 +31,10 @@ import org.apache.commons.math.MathRuntimeException;
public class WeibullDistributionImpl extends AbstractContinuousDistribution public class WeibullDistributionImpl extends AbstractContinuousDistribution
implements WeibullDistribution, Serializable { implements WeibullDistribution, Serializable {
/** Default inverse cumulative probability accuracy */ /**
* Default inverse cumulative probability accuracy
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier */ /** Serializable version identifier */
@ -63,6 +66,7 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
* @param beta the scale parameter. * @param beta the scale parameter.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/ */
public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){ public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){
super(); super();
@ -107,6 +111,7 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
* *
* @param x The point at which the density should be computed. * @param x The point at which the density should be computed.
* @return The pdf at point x. * @return The pdf at point x.
* @since 2.1
*/ */
@Override @Override
public double density(double x) { public double density(double x) {
@ -246,6 +251,7 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
* inverse cumulative probabilities. * inverse cumulative probabilities.
* *
* @return the solver absolute accuracy * @return the solver absolute accuracy
* @since 2.1
*/ */
@Override @Override
protected double getSolverAbsoluteAccuracy() { protected double getSolverAbsoluteAccuracy() {

View File

@ -219,6 +219,7 @@ public class GeneticAlgorithm {
* reach {@link StoppingCondition} in the last run. * reach {@link StoppingCondition} in the last run.
* *
* @return number of generations evolved * @return number of generations evolved
* @since 2.1
*/ */
public int getGenerationsEvolved() { public int getGenerationsEvolved() {
return generationsEvolved; return generationsEvolved;

View File

@ -200,6 +200,7 @@ public class OpenMapRealVector extends AbstractRealVector implements SparseRealV
* Determine if this value is within epsilon of zero. * Determine if this value is within epsilon of zero.
* @param value The value to test * @param value The value to test
* @return <code>true</code> if this value is within epsilon to zero, <code>false</code> otherwise * @return <code>true</code> if this value is within epsilon to zero, <code>false</code> otherwise
* @since 2.1
*/ */
protected boolean isDefaultValue(double value) { protected boolean isDefaultValue(double value) {
return Math.abs(value) < epsilon; return Math.abs(value) < epsilon;
@ -279,7 +280,10 @@ public class OpenMapRealVector extends AbstractRealVector implements SparseRealV
return res; return res;
} }
/** {@inheritDoc} */ /**
* {@inheritDoc}
* @since 2.1
*/
@Override @Override
public OpenMapRealVector copy() { public OpenMapRealVector copy() {
return new OpenMapRealVector(this); return new OpenMapRealVector(this);

View File

@ -63,10 +63,16 @@ public abstract class AbstractLeastSquaresOptimizer implements DifferentiableMul
/** Number of rows of the jacobian matrix. */ /** Number of rows of the jacobian matrix. */
protected int rows; protected int rows;
/** Target value for the objective functions at optimum. */ /**
* Target value for the objective functions at optimum.
* @since 2.1
*/
protected double[] targetValues; protected double[] targetValues;
/** Weight for the least squares cost computation. */ /**
* Weight for the least squares cost computation.
* @since 2.1
*/
protected double[] residualsWeights; protected double[] residualsWeights;
/** Current point. */ /** Current point. */

View File

@ -45,7 +45,10 @@ public abstract class AbstractScalarDifferentiableOptimizer
/** Convergence checker. */ /** Convergence checker. */
protected RealConvergenceChecker checker; protected RealConvergenceChecker checker;
/** Type of optimization. */ /**
* Type of optimization.
* @since 2.1
*/
protected GoalType goal; protected GoalType goal;
/** Current point set. */ /** Current point set. */

View File

@ -37,16 +37,28 @@ public abstract class AbstractLinearOptimizer implements LinearOptimizer {
/** Default maximal number of iterations allowed. */ /** Default maximal number of iterations allowed. */
public static final int DEFAULT_MAX_ITERATIONS = 100; public static final int DEFAULT_MAX_ITERATIONS = 100;
/** Linear objective function. */ /**
* Linear objective function.
* @since 2.1
*/
protected LinearObjectiveFunction function; protected LinearObjectiveFunction function;
/** Linear constraints. */ /**
* Linear constraints.
* @since 2.1
*/
protected Collection<LinearConstraint> linearConstraints; protected Collection<LinearConstraint> linearConstraints;
/** Type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}. */ /**
* Type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
* @since 2.1
*/
protected GoalType goal; protected GoalType goal;
/** Whether to restrict the variables to non-negative values. */ /**
* Whether to restrict the variables to non-negative values.
* @since 2.1
*/
protected boolean nonNegative; protected boolean nonNegative;
/** Maximal number of iterations allowed. */ /** Maximal number of iterations allowed. */

View File

@ -436,6 +436,7 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
* bounds now returned by {@link #getGeneratorUpperBounds()}.</p> * bounds now returned by {@link #getGeneratorUpperBounds()}.</p>
* *
* @return array of bin upper bounds * @return array of bin upper bounds
* @since 2.1
*/ */
public double[] getUpperBounds() { public double[] getUpperBounds() {
double[] binUpperBounds = new double[binCount]; double[] binUpperBounds = new double[binCount];

View File

@ -21,6 +21,7 @@ package org.apache.commons.math.random;
/** /**
* Generate random vectors isotropically located on the surface of a sphere. * Generate random vectors isotropically located on the surface of a sphere.
* *
* @since 2.1
* @version $Revision$ $Date$ * @version $Revision$ $Date$
*/ */

View File

@ -99,7 +99,10 @@ public class EuclideanIntegerPoint implements Clusterable<EuclideanIntegerPoint>
return hashCode; return hashCode;
} }
/** {@inheritDoc} */ /**
* {@inheritDoc}
* @since 2.1
*/
@Override @Override
public String toString() { public String toString() {
final StringBuffer buff = new StringBuffer("("); final StringBuffer buff = new StringBuffer("(");

View File

@ -192,6 +192,7 @@ public class BigReal implements FieldElement<BigReal>, Comparable<BigReal>, Seri
* Gets the rounding mode for division operations * Gets the rounding mode for division operations
* The default is {@code RoundingMode.HALF_UP} * The default is {@code RoundingMode.HALF_UP}
* @return the rounding mode. * @return the rounding mode.
* @since 2.1
*/ */
public RoundingMode getRoundingMode() { public RoundingMode getRoundingMode() {
return roundingMode; return roundingMode;
@ -200,6 +201,7 @@ public class BigReal implements FieldElement<BigReal>, Comparable<BigReal>, Seri
/*** /***
* Sets the rounding mode for decimal divisions. * Sets the rounding mode for decimal divisions.
* @param roundingMode rounding mode for decimal divisions * @param roundingMode rounding mode for decimal divisions
* @since 2.1
*/ */
public void setRoundingMode(RoundingMode roundingMode) { public void setRoundingMode(RoundingMode roundingMode) {
this.roundingMode = roundingMode; this.roundingMode = roundingMode;
@ -209,6 +211,7 @@ public class BigReal implements FieldElement<BigReal>, Comparable<BigReal>, Seri
* Sets the scale for division operations. * Sets the scale for division operations.
* The default is 64 * The default is 64
* @return the scale * @return the scale
* @since 2.1
*/ */
public int getScale() { public int getScale() {
return scale; return scale;
@ -217,6 +220,7 @@ public class BigReal implements FieldElement<BigReal>, Comparable<BigReal>, Seri
/*** /***
* Sets the scale for division operations. * Sets the scale for division operations.
* @param scale scale for division operations * @param scale scale for division operations
* @since 2.1
*/ */
public void setScale(int scale) { public void setScale(int scale) {
this.scale = scale; this.scale = scale;

View File

@ -38,7 +38,10 @@ public final class MathUtils {
*/ */
public static final double SAFE_MIN = 0x1.0p-1022; public static final double SAFE_MIN = 0x1.0p-1022;
/** 2 &pi;. */ /**
* 2 &pi;.
* @since 2.1
*/
public static final double TWO_PI = 2 * Math.PI; public static final double TWO_PI = 2 * Math.PI;
/** -1.0 cast as a byte. */ /** -1.0 cast as a byte. */
@ -1141,6 +1144,7 @@ public final class MathUtils {
* @return normalized array * @return normalized array
* @throws ArithmeticException if the input array contains infinite elements or sums to zero * @throws ArithmeticException if the input array contains infinite elements or sums to zero
* @throws IllegalArgumentException if the target sum is infinite or NaN * @throws IllegalArgumentException if the target sum is infinite or NaN
* @since 2.1
*/ */
public static double[] normalizeArray(double[] values, double normalizedSum) public static double[] normalizeArray(double[] values, double normalizedSum)
throws ArithmeticException, IllegalArgumentException { throws ArithmeticException, IllegalArgumentException {