Added rank transformations.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@776311 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-05-19 13:31:34 +00:00
parent e52b2a3ecf
commit bcccc34cba
8 changed files with 823 additions and 1 deletions

View File

@ -170,4 +170,10 @@
<Bug pattern="NP_NULL_PARAM_DEREF_ALL_TARGETS_DANGEROUS" />
</Match>
<!-- IntDoublePair intentionally implements Comparable inconsistently with equals -->
<Match>
<Class name="org.apache.commons.math.stat.ranking.NaturalRanking$IntDoublePair" />
<Bug pattern="EQ_COMPARETO_USE_OBJECT_EQUALS" />
</Match>
</FindBugsFilter>

View File

@ -0,0 +1,49 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.ranking;
/**
* Strategies for handling NaN values in rank transformations.
* <ul>
* <li>MINIMAL - NaNs are treated as minimal in the ordering, equivalent to
* (that is, tied with) <code>Double.NEGATIVE_INFINITY</code>.</li>
* <li>MAXIMAL - NaNs are treated as maximal in the ordering, equivalent to
* <code>Double.POSITIVE_INFINITY</code></li>
* <li>REMOVED - NaNs are removed before the rank transform is applied</li>
* <li>FIXED - NaNs are left "in place," that is the rank transformation is
* applied to the other elements in the input array, but the NaN elements
* are returned unchanged.</li>
* </ul>
*
* @since 2.0
* @version $Revision:$ $Date:$
*/
public enum NaNStrategy {
/** NaNs are considered minimal in the ordering */
MINIMAL,
/** NaNs are considered maximal in the ordering */
MAXIMAL,
/** NaNs are removed before computing ranks */
REMOVED,
/** NaNs are left in place */
FIXED
}

View File

@ -0,0 +1,458 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.ranking;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.commons.math.random.RandomData;
import org.apache.commons.math.random.RandomDataImpl;
import org.apache.commons.math.random.RandomGenerator;
/**
* <p> Ranking based on the natural ordering on doubles.</p>
* <p>NaNs are treated according to the configured {@link NaNStrategy} and ties
* are handled using the selected {@link TiesStrategy}.
* Configuration settings are supplied in optional constructor arguments.
* Defaults are {@link NaNStrategy#MAXIMAL} and {@link TiesStrategy#AVERAGE},
* respectively. When using {@link TiesStrategy#RANDOM}, a
* {@link RandomGenerator} may be supplied as a constructor argument.</p>
* <p>Examples:
* <table border="1" cellpadding="3">
* <tr><th colspan="3">
* Input data: (20, 17, 30, 42.3, 17, 50, Double.NaN, Double.NEGATIVE_INFINITY, 17)
* </th></tr>
* <tr><th>NaNStrategy</th><th>TiesStrategy</th>
* <th><code>rank(data)</code></th>
* <tr>
* <td>default (NaNs maximal)</td>
* <td>default (ties averaged)</td>
* <td>(5, 3, 6, 7, 3, 8, 9, 1, 3)</td></tr>
* <tr>
* <td>default (NaNs maximal)</td>
* <td>MINIMUM</td>
* <td>(5, 2, 6, 7, 2, 8, 9, 1, 2)</td></tr>
* <tr>
* <td>MINIMAL</td>
* <td>default (ties averaged)</td>
* <td>(6, 4, 7, 8, 4, 9, 1.5, 1.5, 4)</td></tr>
* <tr>
* <td>REMOVED</td>
* <td>SEQUENTIAL</td>
* <td>(5, 2, 6, 7, 3, 8, 1, 4)</td></tr>
* <tr>
* <td>MINIMAL</td>
* <td>MAXIMUM</td>
* <td>(6, 5, 7, 8, 5, 9, 2, 2, 5)</td></tr></table></p>
*
* @since 2.0
* @version $Revision:$ $Date:$
*/
public class NaturalRanking implements RankingAlgorithm {
/** NaN strategy - defaults to NaNs maximal */
private final NaNStrategy nanStrategy;
/** Ties strategy - defaults to ties averaged */
private final TiesStrategy tiesStrategy;
/** Source of random data - used only when ties strategy is RANDOM */
private final RandomData randomData;
/** default NaN strategy */
public static final NaNStrategy DEFAULT_NAN_STRATEGY = NaNStrategy.MAXIMAL;
/** default ties strategy */
public static final TiesStrategy DEFAULT_TIES_STRATEGY = TiesStrategy.AVERAGE;
/**
* Create a NaturalRanking with default strategies for handling ties and NaNs.
*/
public NaturalRanking() {
super();
tiesStrategy = DEFAULT_TIES_STRATEGY;
nanStrategy = DEFAULT_NAN_STRATEGY;
randomData = null;
}
/**
* Create a NaturalRanking with the given TiesStrategy.
*
* @param tiesStrategy the TiesStrategy to use
*/
public NaturalRanking(TiesStrategy tiesStrategy) {
super();
this.tiesStrategy = tiesStrategy;
nanStrategy = DEFAULT_NAN_STRATEGY;
randomData = new RandomDataImpl();
}
/**
* Create a NaturalRanking with the given NaNStrategy.
*
* @param nanStrategy the NaNStrategy to use
*/
public NaturalRanking(NaNStrategy nanStrategy) {
super();
this.nanStrategy = nanStrategy;
tiesStrategy = DEFAULT_TIES_STRATEGY;
randomData = null;
}
/**
* Create a NaturalRanking with the given NaNStrategy and TiesStrategy.
*
* @param nanStrategy NaNStrategy to use
* @param tiesStrategy TiesStrategy to use
*/
public NaturalRanking(NaNStrategy nanStrategy, TiesStrategy tiesStrategy) {
super();
this.nanStrategy = nanStrategy;
this.tiesStrategy = tiesStrategy;
randomData = new RandomDataImpl();
}
/**
* Create a NaturalRanking with TiesStrategy.RANDOM and the given
* RandomGenerator as the source of random data.
*
* @param randomGenerator source of random data
*/
public NaturalRanking(RandomGenerator randomGenerator) {
super();
this.tiesStrategy = TiesStrategy.RANDOM;
nanStrategy = DEFAULT_NAN_STRATEGY;
randomData = new RandomDataImpl(randomGenerator);
}
/**
* Create a NaturalRanking with the given NaNStrategy, TiesStrategy.RANDOM
* and the given source of random data.
*
* @param nanStrategy NaNStrategy to use
* @param randomGenerator source of random data
*/
public NaturalRanking(NaNStrategy nanStrategy,
RandomGenerator randomGenerator) {
super();
this.nanStrategy = nanStrategy;
this.tiesStrategy = TiesStrategy.RANDOM;
randomData = new RandomDataImpl(randomGenerator);
}
/**
* Return the NaNStrategy
*
* @return returns the NaNStrategy
*/
public NaNStrategy getNanStrategy() {
return nanStrategy;
}
/**
* Return the TiesStrategy
*
* @return the TiesStrategy
*/
public TiesStrategy getTiesStrategy() {
return tiesStrategy;
}
/**
* Rank <code>data</code> using the natural ordering on Doubles, with
* NaN values handled according to <code>nanStrategy</code> and ties
* resolved using <code>tiesStrategy.</code>
*
* @param data array to be ranked
* @return array of ranks
*/
public double[] rank(double[] data) {
// Array recording initial positions of data to be ranked
IntDoublePair[] ranks = new IntDoublePair[data.length];
for (int i = 0; i < data.length; i++) {
ranks[i] = new IntDoublePair(data[i], i);
}
// Recode, remove or record positions of NaNs
List<Integer> nanPositions = null;
switch (nanStrategy) {
case MAXIMAL: // Replace NaNs with +INFs
recodeNaNs(ranks, Double.POSITIVE_INFINITY);
break;
case MINIMAL: // Replace NaNs with -INFs
recodeNaNs(ranks, Double.NEGATIVE_INFINITY);
break;
case REMOVED: // Drop NaNs from data
ranks = removeNaNs(ranks);
break;
case FIXED: // Record positions of NaNs
nanPositions = getNanPositions(ranks);
break;
}
// Sort the IntDoublePairs
Arrays.sort(ranks);
// Walk the sorted array, filling output array using sorted positions,
// resolving ties as we go
double[] out = new double[ranks.length];
int pos = 1; // position in sorted array
out[ranks[0].getPosition()] = pos;
List<Integer> tiesTrace = new ArrayList<Integer>();
tiesTrace.add(ranks[0].getPosition());
for (int i = 1; i < ranks.length; i++) {
if (Double.compare(ranks[i].getValue(), ranks[i - 1].getValue()) > 0) {
// tie sequence has ended (or had length 1)
pos = i + 1;
if (tiesTrace.size() > 1) { // if seq is nontrivial, resolve
resolveTie(out, tiesTrace);
}
tiesTrace = new ArrayList<Integer>();
tiesTrace.add(ranks[i].getPosition());
} else {
// tie sequence continues
tiesTrace.add(ranks[i].getPosition());
}
out[ranks[i].getPosition()] = pos;
}
if (tiesTrace.size() > 1) { // handle tie sequence at end
resolveTie(out, tiesTrace);
}
if (nanStrategy == NaNStrategy.FIXED) {
restoreNaNs(out, nanPositions);
}
return out;
}
/**
* Returns an array that is a copy of the input array with IntDoublePairs
* having NaN values removed.
*
* @param ranks input array
* @return array with NaN-valued entries removed
*/
private IntDoublePair[] removeNaNs(IntDoublePair[] ranks) {
if (!containsNaNs(ranks)) {
return ranks;
}
IntDoublePair[] outRanks = new IntDoublePair[ranks.length];
int j = 0;
for (int i = 0; i < ranks.length; i++) {
if (Double.isNaN(ranks[i].getValue())) {
// drop, but adjust original ranks of later elements
for (int k = i + 1; k < ranks.length; k++) {
ranks[k] = new IntDoublePair(
ranks[k].getValue(), ranks[k].getPosition() - 1);
}
} else {
outRanks[j] = new IntDoublePair(
ranks[i].getValue(), ranks[i].getPosition());
j++;
}
}
IntDoublePair[] returnRanks = new IntDoublePair[j];
System.arraycopy(outRanks, 0, returnRanks, 0, j);
return returnRanks;
}
/**
* Recodes NaN values to the given value.
*
* @param ranks array to recode
* @param value the value to replace NaNs with
*/
private void recodeNaNs(IntDoublePair[] ranks, double value) {
for (int i = 0; i < ranks.length; i++) {
if (Double.isNaN(ranks[i].getValue())) {
ranks[i] = new IntDoublePair(
value, ranks[i].getPosition());
}
}
}
/**
* Checks for presence of NaNs in <code>ranks.</code>
*
* @param ranks array to be searched for NaNs
* @return true iff ranks contains one or more NaNs
*/
private boolean containsNaNs(IntDoublePair[] ranks) {
for (int i = 0; i < ranks.length; i++) {
if (Double.isNaN(ranks[i].getValue())) {
return true;
}
}
return false;
}
/**
* Resolve a sequence of ties, using the cconfigured {@link TiesStrategy}.
* The input <code>ranks</code> array is expected to take the same value
* for all indices in <code>tiesTrace</code>. The common value is recoded
* according to the tiesStrategy. For example, if ranks = <5,8,2,6,2,7,1,2>,
* tiesTrace = <2,4,7> and tiesStrategy is MINIMUM, ranks will be unchanged.
* The same array and trace with tiesStrategy AVERAGE will come out
* <5,8,3,6,3,7,1,3>.
*
* @param ranks array of ranks
* @param tiesTrace list of indices where <code>ranks</code> is constant
* -- that is, for any i and j in TiesTrace, <code> ranks[i] == ranks[j]
* </code>
*/
private void resolveTie(double[] ranks, List<Integer> tiesTrace) {
// constant value of ranks over tiesTrace
final double c = ranks[tiesTrace.get(0)];
// length of sequence of tied ranks
final int length = tiesTrace.size();
switch (tiesStrategy) {
case AVERAGE: // Replace ranks with average
fill(ranks, tiesTrace, (2 * c + length - 1) / 2d);
break;
case MAXIMUM: // Replace ranks with maximum values
fill(ranks, tiesTrace, c + length - 1);
break;
case MINIMUM: // Replace ties with minimum
fill(ranks, tiesTrace, c);
break;
case RANDOM: // Fill with random integral values in [c, c + length - 1]
Iterator<Integer> iterator = tiesTrace.iterator();
long f = Math.round(c);
while (iterator.hasNext()) {
ranks[iterator.next()] =
randomData.nextLong(f, f + length - 1);
}
break;
case SEQUENTIAL: // Fill sequentially from c to c + length - 1
// walk and fill
iterator = tiesTrace.iterator();
f = Math.round(c);
int i = 0;
while (iterator.hasNext()) {
ranks[iterator.next()] = f + i++;
}
break;
}
}
/**
* Sets<code>data[i] = value</code> for each i in <code>tiesTrace.</code>
*
* @param data array to modify
* @param tiesTrace list of index values to set
* @param value value to set
*/
private void fill(double[] data, List<Integer> tiesTrace, double value) {
Iterator<Integer> iterator = tiesTrace.iterator();
while (iterator.hasNext()) {
data[iterator.next()] = value;
}
}
/**
* Set <code>ranks[i] = Double.NaN</code> for each i in <code>nanPositions.</code>
*
* @param ranks array to modify
* @param nanPositions list of index values to set to <code>Double.NaN</code>
*/
private void restoreNaNs(double[] ranks, List<Integer> nanPositions) {
if (nanPositions.size() == 0) {
return;
}
Iterator<Integer> iterator = nanPositions.iterator();
while (iterator.hasNext()) {
ranks[iterator.next().intValue()] = Double.NaN;
}
}
/**
* Returns a list of indexes where <code>ranks</code> is <code>NaN.</code>
*
* @param ranks array to search for <code>NaNs</code>
* @return list of indexes i such that <code>ranks[i] = NaN</code>
*/
private List<Integer> getNanPositions(IntDoublePair[] ranks) {
ArrayList<Integer> out = new ArrayList<Integer>();
for (int i = 0; i < ranks.length; i++) {
if (Double.isNaN(ranks[i].getValue())) {
out.add(Integer.valueOf(i));
}
}
return out;
}
/**
* Represents the position of a double value in an ordering.
* Comparable interface is implemented so Arrays.sort can be used
* to sort an array of IntDoublePairs by value. Note that the
* implicitly defined natural ordering is NOT consistent with equals.
*/
private static class IntDoublePair implements Comparable<IntDoublePair> {
/** Value of the pair */
final private double value;
/** Original position of the pair */
final private int position;
/**
* Construct an IntDoublePair with the given value and position.
* @param value the value of the pair
* @param position the original position
*/
public IntDoublePair(double value, int position) {
this.value = value;
this.position = position;
}
/**
* Compare this IntDoublePair to another pair.
* Only the <strong>values</strong> are compared.
*
* @param other the other pair to compare this to
* @return result of <code>Double.compare(value, other.value)</code>
*/
public int compareTo(IntDoublePair other) {
return Double.compare(value, other.value);
}
/**
* Returns the value of the pair.
* @return value
*/
public double getValue() {
return value;
}
/**
* Returns the original position of the pair.
* @return position
*/
public int getPosition() {
return position;
}
}
}

View File

@ -0,0 +1,41 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.ranking;
/**
* Interface representing a rank transformation.
*
* @since 2.0
* @version $Revision:$ $Date:$
*/
public interface RankingAlgorithm {
/**
* <p>Performs a rank transformation on the input data, returning an array
* of ranks.</p>
*
* <p>Ranks should be 1-based - that is, the smallest value
* returned in an array of ranks should be greater than or equal to one,
* rather than 0. Ranks should in general take integer values, though
* implementations may return averages or other floating point values
* to resolve ties in the input data.</p>
*
* @param data array of data to be ranked
* @return an array of ranks corresponding to the elements of the input array
*/
double[] rank (double[] data);
}

View File

@ -0,0 +1,55 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.ranking;
/**
* Strategies for handling tied values in rank transformations.
* <ul>
* <li>SEQUENTIAL - Ties are assigned ranks in order of occurrence in the original array,
* for example (1,3,4,3) is ranked as (1,2,4,3)</li>
* <li>MINIMUM - Tied values are assigned the minimum applicable rank, or the rank
* of the first occurrence. For example, (1,3,4,3) is ranked as (1,2,4,2)</li>
* <li>MAXIMUM - Tied values are assigned the maximum applicable rank, or the rank
* of the last occurrence. For example, (1,3,4,3) is ranked as (1,3,4,3)</li>
* <li>AVERAGE - Tied values are assigned the average of the applicable ranks.
* For example, (1,3,4,3) is ranked as (1,2.5,4,2.5)</li>
* <li>AVERAGE - Tied values are assigned a random integer rank from among the
* applicable values. The assigned rank will always be an integer, (inclusively)
* between the values retured by the MINIMUM and MAXIMUM strategies.</li>
* </ul>
*
* @since 2.0
* @version $Revision:$ $Date:$
*/
public enum TiesStrategy {
/** Ties assigned sequential ranks in order of occurrence */
SEQUENTIAL,
/** Ties get the minimum applicable rank */
MINIMUM,
/** Ties get the maximum applicable rank */
MAXIMUM,
/** Ties get the average of applicable ranks */
AVERAGE,
/** Ties get a random integral value from among applicable ranks */
RANDOM
}

View File

@ -0,0 +1,22 @@
<html>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!-- $Revision:$ $Date:$ -->
<body>
Classes providing rank transformations.
</body>
</html>

View File

@ -39,7 +39,10 @@ The <action> type attribute can be add,update,fix,remove.
</properties>
<body>
<release version="2.0" date="TBD" description="TBD">
<action dev="luc" type="update" >
<action dev="psteitz" type="add">
Added support for rank transformations.
</action>
<action dev="luc" type="update">
Completed internationalization of all error messages
</action>
<action dev="luc" type="add" issue="MATH-266" due-to="Benjamin McCann">

View File

@ -0,0 +1,188 @@
/*
* TiesEquivalentRankTest.java created on Aug 24, 2005 by jdgant01
*
*/
package org.apache.commons.math.stat.ranking;
import org.apache.commons.math.TestUtils;
import org.apache.commons.math.random.JDKRandomGenerator;
import org.apache.commons.math.random.RandomGenerator;
import junit.framework.TestCase;
/**
* Test cases for NaturalRanking class
*
* @since 2.0
* @version $Revision:$ $Date:$
*/
public class NaturalRankingTest extends TestCase {
private final double[] exampleData =
{20, 17, 30, 42.3, 17, 50, Double.NaN, Double.NEGATIVE_INFINITY, 17};
private final double[] tiesFirst = {0, 0, 2, 1, 4};
private final double[] tiesLast = {4, 4, 1, 0};
private final double[] multipleNaNs = {0, 1, Double.NaN, Double.NaN};
private final double[] multipleTies = {3, 2, 5, 5, 6, 6, 1};
private final double[] allSame = {0, 0, 0, 0};
public NaturalRankingTest(String arg0) {
super(arg0);
}
protected void setUp() throws Exception {
super.setUp();
}
protected void tearDown() throws Exception {
super.tearDown();
}
public void testDefault() { // Ties averaged, NaNs maximal
NaturalRanking ranking = new NaturalRanking();
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {5, 3, 6, 7, 3, 8, 9, 1, 3};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {1.5, 1.5, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {3.5, 3.5, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {1, 2, 3.5, 3.5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 4.5, 4.5, 6.5, 6.5, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {2.5, 2.5, 2.5, 2.5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsMaximalTiesMinimum() {
NaturalRanking ranking = new NaturalRanking(TiesStrategy.MINIMUM);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {5, 2, 6, 7, 2, 8, 9, 1, 2};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {1, 1, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {3, 3, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {1, 2, 3, 3};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 4, 4, 6, 6, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {1, 1, 1, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsRemovedTiesSequential() {
NaturalRanking ranking = new NaturalRanking(NaNStrategy.REMOVED,
TiesStrategy.SEQUENTIAL);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {5, 2, 6, 7, 3, 8, 1, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {1, 2, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {3, 4, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {1, 2};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 4, 5, 6, 7, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {1, 2, 3, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsMinimalTiesMaximum() {
NaturalRanking ranking = new NaturalRanking(NaNStrategy.MINIMAL,
TiesStrategy.MAXIMUM);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {6, 5, 7, 8, 5, 9, 2, 2, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {2, 2, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {4, 4, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {3, 4, 2, 2};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 5, 5, 7, 7, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {4, 4, 4, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsMinimalTiesAverage() {
NaturalRanking ranking = new NaturalRanking(NaNStrategy.MINIMAL);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {6, 4, 7, 8, 4, 9, 1.5, 1.5, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {1.5, 1.5, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {3.5, 3.5, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {3, 4, 1.5, 1.5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 4.5, 4.5, 6.5, 6.5, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {2.5, 2.5, 2.5, 2.5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsFixedTiesRandom() {
RandomGenerator randomGenerator = new JDKRandomGenerator();
randomGenerator.setSeed(1000);
NaturalRanking ranking = new NaturalRanking(NaNStrategy.FIXED,
randomGenerator);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = {5, 4, 6, 7, 3, 8, Double.NaN, 1, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] {1, 1, 4, 3, 5};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] {3, 4, 2, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] {1, 2, Double.NaN, Double.NaN};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] {3, 2, 5, 5, 7, 6, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] {1, 3, 4, 4};
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
public void testNaNsAndInfs() {
double[] data = {0, Double.POSITIVE_INFINITY, Double.NaN, Double.NEGATIVE_INFINITY};
NaturalRanking ranking = new NaturalRanking(NaNStrategy.MAXIMAL);
double[] ranks = ranking.rank(data);
double[] correctRanks = new double[] {2, 3.5, 3.5, 1};
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranking = new NaturalRanking(NaNStrategy.MINIMAL);
ranks = ranking.rank(data);
correctRanks = new double[] {3, 4, 1.5, 1.5};
}
}