* Various changes and fixes to UNNEST.
Native changes:
1) UnnestDataSource: Replace "column" and "outputName" with "virtualColumn".
This enables pushing expressions into the datasource. This in turn
allows us to do the next thing...
2) UnnestStorageAdapter: Logically apply query-level filters and virtual
columns after the unnest operation. (Physically, filters are pulled up,
when possible.) This is beneficial because it allows filters and
virtual columns to reference the unnested column, and because it is
consistent with how the join datasource works.
3) Various documentation updates, including declaring "unnest" as an
experimental feature for now.
SQL changes:
1) Rename DruidUnnestRel (& Rule) to DruidUnnestRel (& Rule). The rel
is simplified: it only handles the UNNEST part of a correlated join.
Constant UNNESTs are handled with regular inline rels.
2) Rework DruidCorrelateUnnestRule to focus on pulling Projects from
the left side up above the Correlate. New test testUnnestTwice verifies
that this works even when two UNNESTs are stacked on the same table.
3) Include ProjectCorrelateTransposeRule from Calcite to encourage
pushing mappings down below the left-hand side of the Correlate.
4) Add a new CorrelateFilterLTransposeRule and CorrelateFilterRTransposeRule
to handle pulling Filters up above the Correlate. New tests
testUnnestWithFiltersOutside and testUnnestTwiceWithFilters verify
this behavior.
5) Require a context feature flag for SQL UNNEST, since it's undocumented.
As part of this, also cleaned up how we handle feature flags in SQL.
They're now hooked into EngineFeatures, which is useful because not
all engines support all features.
You can now add additional configuration files to be copied to the final conf directory on startup when running in a containerized environment. Useful for running on Kubernetes and needing to add more files with a config map. To specify the path where the configMap is mounted, utilize the DRUID_ADDITIONAL_CONF_DIR environment variable.
* As a follow up to #13893, this PR improves the comments added along with examples for the code, as well as adds handling for an edge case where the generated tombstone boundaries were overshooting the bounds of MIN_TIME (or MAX_TIME).
With SuperSorter using the PartitionedOutputChannels for sorting, it might OOM on inputs of reasonable size because the channel consists of both the writable frame channel and the frame allocator, both of which are not required once the output channel has been written to.
This change adds a readOnly to the output channel which contains only the readable channel, due to which unnecessary memory references to the writable channel and the memory allocator are lost once the output channel has been written to, preventing the OOM.
* Window planning: use collation traits, improve subquery logic.
SQL changes:
1) Attach RelCollation (sorting) trait to any PartialDruidQuery
that ends in AGGREGATE or AGGREGATE_PROJECT. This allows planning to
take advantage of the fact that Druid sorts by dimensions when
doing aggregations.
2) Windowing: inspect RelCollation trait from input, and insert naiveSort
if, and only if, necessary.
3) Windowing: add support for Project after Window, when the Project
is a simple mapping. Helps eliminate subqueries.
4) DruidRules: update logic for considering subqueries to reflect that
subqueries are not required to be GroupBys, and that we have a bunch
of new Stages now. With all of this evolution that has happened, the
old logic didn't quite make sense.
Native changes:
1) Use merge sort (stable) rather than quicksort when sorting
RowsAndColumns. Makes it easier to write test cases for plans that
involve re-sorting the data.
* Changes from review.
* Mark the bad test as failing.
* Additional update.
* Fix failingTest.
* Fix tests.
* Mark a var final.
* Improve memory efficiency of WrappedRoaringBitmap.
Two changes:
1) Use an int[] for sizes 4 or below.
2) Remove the boolean compressRunOnSerialization. Doesn't save much
space, but it does save a little, and it isn't adding a ton of value
to have it be configurable. It was originally configurable in case
anything broke when enabling it, but it's been a while and nothing
has broken.
* Slight adjustment.
* Adjust for inspection.
* Updates.
* Update snaps.
* Update test.
* Adjust test.
* Fix snaps.
* use custom case operator conversion instead of direct operator conversion, to produce native nvl expression for SQL NVL and 2 argument COALESCE, and add optimization for certain case filters from coalesce and nvl statements
* Sort-merge join and hash shuffles for MSQ.
The main changes are in the processing, multi-stage-query, and sql modules.
processing module:
1) Rename SortColumn to KeyColumn, replace boolean descending with KeyOrder.
This makes it nicer to model hash keys, which use KeyOrder.NONE.
2) Add nullability checkers to the FieldReader interface, and an
"isPartiallyNullKey" method to FrameComparisonWidget. The join
processor uses this to detect null keys.
3) Add WritableFrameChannel.isClosed and OutputChannel.isReadableChannelReady
so callers can tell which OutputChannels are ready for reading and which
aren't.
4) Specialize FrameProcessors.makeCursor to return FrameCursor, a random-access
implementation. The join processor uses this to rewind when it needs to
replay a set of rows with a particular key.
5) Add MemoryAllocatorFactory, which is embedded inside FrameWriterFactory
instead of a particular MemoryAllocator. This allows FrameWriterFactory
to be shared in more scenarios.
multi-stage-query module:
1) ShuffleSpec: Add hash-based shuffles. New enum ShuffleKind helps callers
figure out what kind of shuffle is happening. The change from SortColumn
to KeyColumn allows ClusterBy to be used for both hash-based and sort-based
shuffling.
2) WorkerImpl: Add ability to handle hash-based shuffles. Refactor the logic
to be more readable by moving the work-order-running code to the inner
class RunWorkOrder, and the shuffle-pipeline-building code to the inner
class ShufflePipelineBuilder.
3) Add SortMergeJoinFrameProcessor and factory.
4) WorkerMemoryParameters: Adjust logic to reserve space for output frames
for hash partitioning. (We need one frame per partition.)
sql module:
1) Add sqlJoinAlgorithm context parameter; can be "broadcast" or
"sortMerge". With native, it must always be "broadcast", or it's a
validation error. MSQ supports both. Default is "broadcast" in
both engines.
2) Validate that MSQs do not use broadcast join with RIGHT or FULL join,
as results are not correct for broadcast join with those types. Allow
this in native for two reasons: legacy (the docs caution against it,
but it's always been allowed), and the fact that it actually *does*
generate correct results in native when the join is processed on the
Broker. It is much less likely that MSQ will plan in such a way that
generates correct results.
3) Remove subquery penalty in DruidJoinQueryRel when using sort-merge
join, because subqueries are always required, so there's no reason
to penalize them.
4) Move previously-disabled join reordering and manipulation rules to
FANCY_JOIN_RULES, and enable them when using sort-merge join. Helps
get to better plans where projections and filters are pushed down.
* Work around compiler problem.
* Updates from static analysis.
* Fix @param tag.
* Fix declared exception.
* Fix spelling.
* Minor adjustments.
* wip
* Merge fixups
* fixes
* Fix CalciteSelectQueryMSQTest
* Empty keys are sortable.
* Address comments from code review. Rename mux -> mix.
* Restore inspection config.
* Restore original doc.
* Reorder imports.
* Adjustments
* Fix.
* Fix imports.
* Adjustments from review.
* Update header.
* Adjust docs.
* Use TaskConfig to get task dir in KubernetesTaskRunner
* Use the first path specified in baseTaskDirPaths instead of deprecated baseTaskDirPath
* Use getBaseTaskDirPaths in generate command
This function is notorious for causing memory exhaustion and excessive
CPU usage; so much so that it was valuable to work around it in the
SQL planner in #13206. Hopefully, a warning comment will encourage
developers to stay away and come up with solutions that do not involve
computing all possible buckets.
Python Druid API for use in notebooks
Revises existing notebooks and readme to reference
the new API.
Notebook to explain the new API.
Split README into a console version and a notebook
version to work around lack of a nice display for
md files.
Update the REST API notebook to use simpler Requests calls
Converted the SQL tutorial to use the Python library
README file, converted to using properties
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Bump CycloneDX module to address POM errors
* Including web-console in the PR
---------
Co-authored-by: Elliott Freis <elliottfreis@Elliott-Freis.earth.dynamic.blacklight.net>
You can now do the following operations with TupleSketches in Post Aggregation Step
Get the Sketch Output as Base64 String
Provide a constant Tuple Sketch in post-aggregation step that can be used in Set Operations
Get the Estimated Value(Sum) of Summary/Metrics Objects associated with Tuple Sketch
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.
*When running REPLACE queries, the segments which contain no data are dropped (marked as unused). This PR aims to generate tombstones in place of segments which contain no data to mark their deletion, as is the behavior with the native ingestion.
This will cause InsertCannotReplaceExistingSegmentFault to be removed since it was generated if the interval to be marked unused didn't fully overlap one of the existing segments to replace.
* move numeric null value coercion out of expression processing engine
* add ExprEval.valueOrDefault() to allow consumers to automatically coerce to default values
* rename Expr.buildVectorized as Expr.asVectorProcessor more consistent naming with Function and ApplyFunction; javadocs for some stuff
* Fix NPE in KinesisSupervisor#setupRecordSupplier.
PR #13539 refactored record supplier creation and introduced a bug:
this method would throw NPE when recordsPerFetch was not provided
by the user. recordsPerFetch isn't needed in this context at all,
since the supervisor-side supplier doesn't fetch records. So this
patch sets it to zero.
* Remove unused imports.