* enables to launch a fake broker based on test resources (druidtest uri)
* could record queries into new testfiles during usage
* instead of re-purpose Calcite's Hook migrates to use DruidHook which we can add further keys
* added a quidem-ut module which could be the place for tests which could iteract with modules/etc
This PR adds indexer-level task metrics-
"indexer/task/failed/count"
"indexer/task/success/count"
the current "worker/task/completed/count" metric shows all the tasks completed irrespective of success or failure status so these metrics would help us get more visibility into the status of the completed tasks
This patch introduces an optional cluster configuration, druid.indexing.formats.stringMultiValueHandlingMode, allowing operators to override the default mode SORTED_SET for string dimensions. The possible values for the config are SORTED_SET, SORTED_ARRAY, or ARRAY (SORTED_SET is the default). Case insensitive values are allowed.
While this cluster property allows users to manage the multi-value handling mode for string dimension types, it's recommended to migrate to using real array types instead of MVDs.
This fixes a long-standing issue where compaction will honor the configured cluster wide property instead of rewriting it as the default SORTED_ARRAY always, even if the data was originally ingested with ARRAY or SORTED_SET.
Design:
The loading rate is computed as a moving average of at least the last 10 GiB of successful segment loads.
To account for multiple loading threads on a server, we use the concept of a batch to track load times.
A batch is a set of segments added by the coordinator to the load queue of a server in one go.
Computation:
batchDurationMillis = t(load queue becomes empty) - t(first load request in batch is sent to server)
batchBytes = total bytes successfully loaded in batch
avg loading rate in batch (kbps) = (8 * batchBytes) / batchDurationMillis
overall avg loading rate (kbps) = (8 * sumOverWindow(batchBytes)) / sumOverWindow(batchDurationMillis)
Changes:
- Add `LoadingRateTracker` which computes a moving average load rate based on
the last few GBs of successful segment loads.
- Emit metric `segment/loading/rateKbps` from the Coordinator. In the future, we may
also consider emitting this metric from the historicals themselves.
- Add `expectedLoadTimeMillis` to response of API `/druid/coordinator/v1/loadQueue?simple`
* SQL syntax error should target USER persona
* * revert change to queryHandler and related tests, based on review comments
* * add test
* Introduce KinesisRecordEntity to support Kinesis headers in InputFormats
* * add kinesisInputFormat and Reader, and tests
* * bind KinesisInputFormat class to module
* * improve test coverage
* * remove references to kafka
* * resolve review comments
* * remove comment
* * fix grammer of comment
* * fix comment again
* * fix comment again
* * more review comments
* * add partitionKey
* * add check for same timestamp and partitionKey column name
* * fix intellij inspection
* stages and counters can be seen on the status reponse
* warnings are exposed also
* mark as msq when attached
* update snapshots
* download CSV/TSV null as empty cell
If the optional query parameter detail is supplied, then the response also includes the following:
* A stages object that summarizes information about the different stages being used for query execution, such as stage number, phase, start time, duration, input and output information, processing methods, and partitioning.
* A counters object that provides details on the rows, bytes, and files processed at various stages for each worker across different channels, along with sort progress.
* A warnings object that provides details about any warnings.
* MSQ worker: Support in-memory shuffles.
This patch is a follow-up to #16168, adding worker-side support for
in-memory shuffles. Changes include:
1) Worker-side code now respects the same context parameter "maxConcurrentStages"
that was added to the controller in #16168. The parameter remains undocumented
for now, to give us a chance to more fully develop and test this functionality.
1) WorkerImpl is broken up into WorkerImpl, RunWorkOrder, and RunWorkOrderListener
to improve readability.
2) WorkerImpl has a new StageOutputHolder + StageOutputReader concept, which
abstract over memory-based or file-based stage results.
3) RunWorkOrder is updated to create in-memory stage output channels when
instructed to.
4) ControllerResource is updated to add /doneReadingInput/, so the controller
can tell when workers that sort, but do not gather statistics, are done reading
their inputs.
5) WorkerMemoryParameters is updated to consider maxConcurrentStages.
Additionally, WorkerChatHandler is split into WorkerResource, so as to match
ControllerChatHandler and ControllerResource.
* Updates for static checks, test coverage.
* Fixes.
* Remove exception.
* Changes from review.
* Address static check.
* Changes from review.
* Improvements to docs and method names.
* Update comments, add test.
* Additional javadocs.
* Fix throws.
* Fix worker stopping in tests.
* Fix stuck test.
Changes:
- Rename `CoordinatorCompactionConfig` to `DruidCompactionConfig`
- Rename `CompactionConfigUpdateRequest` to `ClusterCompactionConfig`
- Refactor methods in `DruidCompactionConfig`
- Clean up `DataSourceCompactionConfigHistory` and its tests
- Clean up tests and add new tests
- Change API path `/druid/coordinator/v1/config/global` to `/druid/coordinator/v1/config/cluster`
Follow-up to #16291, this commit enables a subset of existing native compaction ITs on the MSQ engine.
In the process, the following changes have been introduced in the MSQ compaction flow:
- Populate `metricsSpec` in `CompactionState` from `querySpec` in `MSQControllerTask` instead of `dataSchema`
- Add check for pre-rolled-up segments having `AggregatorFactory` with different input and output column names
- Fix passing missing cluster-by clause in scan queries
- Add annotation of `CompactionState` to tombstone segments
Rejects having clauses if they contain windowed expressions.
Also added a check to produce a more descriptive error if an OVER expression
reaches the filter translation layer.
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
Changes:
- Add API `/druid/coordinator/v1/config/compaction/global` to update cluster level compaction config
- Add class `CompactionConfigUpdateRequest`
- Fix bug in `CoordinatorCompactionConfig` which caused compaction engine to not be persisted.
Use json field name `engine` instead of `compactionEngine` because JSON field names must align
with the getter name.
- Update MSQ validation error messages
- Complete overhaul of `CoordinatorCompactionConfigResourceTest` to remove unnecessary mocking
and add more meaningful tests.
- Add `TuningConfigBuilder` to easily build tuning configs for tests.
- Add `DatasourceCompactionConfigBuilder`
* batch 03 - trig functions
* Apply suggestions from code review
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* applying suggestions and corrections
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Round-robin iterator for datasources to kill.
Currently there's a fairness problem in the KillUnusedSegments duty
where the duty consistently selects the same set of datasources as discovered
from the metadata store or dynamic config params. This is a problem especially
when there are multiple unused. In a medium to large cluster, while we can increase
the task slots to increase the likelihood of broader coverage. This patch adds a simple
round-robin iterator to select datasources and has the following properties:
1. Starts with an initial random cursor position in an ordered list of candidates.
2. Consecutive {@code next()} iterations from {@link #getIterator()} are guaranteed to be deterministic
unless the set of candidates change when {@link #updateCandidates(Set)} is called.
3. Guarantees that no duplicate candidates are returned in two consecutive {@code next()} iterations.
* Renames in RoundRobinIteratorTest.
* Address review comments.
1. Clarify javadocs on the ordered list. Also flesh out the details a bit more.
2. Rename the test hooks to make intent clearer and fix typo.
3. Add NotThreadSafe annotation.
4. Remove one potentially noisy log that's in the path of iteration.
* Add null check to input candidates.
* More commentary.
* Addres review feedback: downgrade some new info logs to debug; invert condition.
Remove redundant comments.
Remove rendundant variable tracking.
* CircularList adjustments.
* Updates to CircularList and cleanup RoundRobinInterator.
* One more case and add more tests.
* Make advanceCursor private for now.
* Review comments.
* Coerce COMPLEX to number in numeric aggregators.
PR #15371 eliminated ObjectColumnSelector's built-in implementations of
numeric methods, which had been marked deprecated.
However, some complex types, like SpectatorHistogram, can be successfully coerced
to number. The documentation for spectator histograms encourages taking advantage of
this by aggregating complex columns with doubleSum and longSum. Currently, this
doesn't work properly for IncrementalIndex, where the behavior relied on those
deprecated ObjectColumnSelector methods.
This patch fixes the behavior by making two changes:
1) SimpleXYZAggregatorFactory (XYZ = type; base class for simple numeric aggregators;
all of these extend NullableNumericAggregatorFactory) use getObject for STRING
and COMPLEX. Previously, getObject was only used for STRING.
2) NullableNumericAggregatorFactory (base class for simple numeric aggregators)
has a new protected method "useGetObject". This allows the base class to
correctly check for null (using getObject or isNull).
The patch also adds a test for SpectatorHistogram + doubleSum + IncrementalIndex.
* Fix tests.
* Remove the special ColumnValueSelector.
* Add test.
* HashJoinEngine: Check for interruptions while walking left cursor.
Previously, the engine only checked for interruptions between emitting
joined rows. In scenarios where large numbers of left rows are skipped
completely (such as a highly selective INNER JOIN) this led to the
join cursor being insufficiently responsive to cancellation.
* Coverage.
Changes the WindowFrame internals / representation a bit; introduces dedicated frametypes for rows and groups which corresponds to the implemented processing methods
* more aggressive cancellation of broker parallel merge, more chill blocking queue timeouts
* wire parallel merge into query cancellation system
* oops
* style
* adjust metrics initialization
* fix timeout, fix cleanup to not block
* javadocs to clarify why cancellation future and gizmo are split
* cancelled -> canceled, simplify QueuePusher since it always takes a ResultBatch, non-static terminal marker to make stuff stop complaining about types, specialize tryOffer to be tryOfferTerminal so it wont be misused, add comments to clarify reason for non-blocking offers that might fail
For aggregators like StringFirst/Last, whose intermediate type isn't the same as the final type, using them in GroupBy, TopN or Timeseries subqueries causes a fallback when maxSubqueryBytes is set. This is because we assume that the finalization is not known, due to which the row signature cannot determine whether to use the intermediate or the final type, and it puts it as null. This PR figures out the finalization from the query context and uses the intermediate or the final type appropriately.
* MSQ window functions: Revamp logic to create separate window stages when empty over() clause is present
* Fix tests
* Revert changes of creating separate stages for empty over clause
* Address review comments
changes:
* moves value column serializer initialization, call to `writeValue` method to `GlobalDictionaryEncodedFieldColumnWriter.writeTo` instead of during `GlobalDictionaryEncodedFieldColumnWriter.addValue`. This shift means these numeric value columns are now done in the per field section that happens after serializing the nested column raw data, so only a single compression buffer and temp file will be needed at a time instead of the total number of nested literal fields present in the column. This should be especially helpful for complicated nested structures with thousands of columns as even those 64k compression buffers can add up pretty quickly to a sizeable chunk of direct memory.