For aggregators like StringFirst/Last, whose intermediate type isn't the same as the final type, using them in GroupBy, TopN or Timeseries subqueries causes a fallback when maxSubqueryBytes is set. This is because we assume that the finalization is not known, due to which the row signature cannot determine whether to use the intermediate or the final type, and it puts it as null. This PR figures out the finalization from the query context and uses the intermediate or the final type appropriately.
* MSQ window functions: Revamp logic to create separate window stages when empty over() clause is present
* Fix tests
* Revert changes of creating separate stages for empty over clause
* Address review comments
changes:
* moves value column serializer initialization, call to `writeValue` method to `GlobalDictionaryEncodedFieldColumnWriter.writeTo` instead of during `GlobalDictionaryEncodedFieldColumnWriter.addValue`. This shift means these numeric value columns are now done in the per field section that happens after serializing the nested column raw data, so only a single compression buffer and temp file will be needed at a time instead of the total number of nested literal fields present in the column. This should be especially helpful for complicated nested structures with thousands of columns as even those 64k compression buffers can add up pretty quickly to a sizeable chunk of direct memory.
changes:
* removes `druid.indexer.task.batchProcessingMode` in favor of always using `CLOSED_SEGMENT_SINKS` which uses `BatchAppenderator`. This was intended to become the default for native batch, but that was missed so `CLOSED_SEGMENTS` was the default (using `AppenderatorImpl`), however MSQ has been exclusively using `BatchAppenderator` with no problems so it seems safe to just roll it out as the only option for batch ingestion everywhere.
* with `batchProcessingMode` gone, there is no use for `AppenderatorImpl` so it has been removed
* implify `Appenderator` construction since there are only separate stream and batch versions now
* simplify tests since `batchProcessingMode` is gone
This PR aims to check if the complex column being queried aligns with the supported types in the aggregator and aggregator factories, and throws a user-friendly error message if they don't.
* Throw exception if DISTINCT used with window functions aggregate call
* Improve error message when unsupported aggregations are used with window functions
Fixes#16766
Change log level from INFO to DEBUG when processing an empty user map
during polling. An empty user map is a normal situation for some
authenticators (e.g. LDAP) and polling is frequent (1 minute by
default.)
changes:
* removed `Firehose` and `FirehoseFactory` and remaining implementations which were mostly no longer used after #16602
* Moved `IngestSegmentFirehose` which was still used internally by Hadoop ingestion to `DatasourceRecordReader.SegmentReader`
* Rename `SQLFirehoseFactoryDatabaseConnector` to `SQLInputSourceDatabaseConnector` and similar renames for sub-classes
* Moved anything remaining in a 'firehose' package somewhere else
* Clean up docs on firehose stuff
Description:
Overlord guice dependencies are currently a little difficult to plug into.
This was encountered while working on a separate PR where a class needed to depend
on `TaskMaster.getTaskQueue()` to query some task related info but this class itself
needs to be a dependency of `TaskMaster` so that it can be registered to the leader lifecycle.
The approach taken here is to simply decouple the leadership lifecycle of the overlord from
manipulation or querying of its state.
Changes:
- No functional change
- Add new class `DruidOverlord` to contain leadership logic after the model of `DruidCoordinator`
- The new class `DruidOverlord` should not be a dependency of any class with the exception of
REST endpoint `*Resource` classes.
- All classes that need to listen to leadership changes must be a dependency of `DruidOverlord`
so that they can be registered to the leadership lifecycle.
- Move all querying logic from `OverlordResource` to `TaskQueryTool` so that other classes can
leverage this logic too (required for follow up PR).
- Update tests
* pre upgrade
* did the upgrade
* update snapshots
* fix BP5 issues
* update licenses
* fix more depication warnings
* use segmented control
* updat snapshots
* convert to fake local time
* preload icons before tests
* update e2e tests
* Update web-console/src/components/segment-timeline/segment-timeline.tsx
Co-authored-by: John Gozde <john@gozde.ca>
* Update web-console/src/components/segment-timeline/segment-timeline.tsx
Co-authored-by: John Gozde <john@gozde.ca>
* update e2e test selector
* direct import date-fns
---------
Co-authored-by: John Gozde <john@gozde.ca>
* updating first batch of numeric functions
* First batch of functions
* addressing first few comments
* alphabetize list
* draft with suggestions applied
* minor discrepency expr -> <NUMERIC>
* changed raises to calculates
* Update docs/querying/sql-functions.md
* switch to underscore
* changed to exp(1) to match slack message
* adding html text for trademark symbol to .spelling
* fixed discrepancy between description and example
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* remove __time from min max query shortcut
* fix scrolling in retention rules dialog
* actions menus should have titles
* change term
* correctly name sort/shuffle
Changes:
- Do not hold a reference to `TaskQueue` in `TaskStorageQueryAdapter`
- Use `TaskStorage` instead of `TaskStorageQueryAdapter` in `IndexerMetadataStorageAdapter`
- Rename `TaskStorageQueryAdapter` to `TaskQueryTool`
- Fix newly added task actions `RetrieveUpgradedFromSegmentIds` and `RetrieveUpgradedToSegmentIds`
by removing `isAudited` method.
Description:
Task action audit logging was first deprecated and disabled by default in Druid 0.13, #6368.
As called out in the original discussion #5859, there are several drawbacks to persisting task action audit logs.
- Only usage of the task audit logs is to serve the API `/indexer/v1/task/{taskId}/segments`
which returns the list of segments created by a task.
- The use case is really narrow and no prod clusters really use this information.
- There can be better ways of obtaining this information, such as the metric
`segment/added/bytes` which reports both the segment ID and task ID
when a segment is committed by a task. We could also include committed segment IDs in task reports.
- A task persisting several segments would bloat up the audit logs table putting unnecessary strain
on metadata storage.
Changes:
- Remove `TaskAuditLogConfig`
- Remove method `TaskAction.isAudited()`. No task action is audited anymore.
- Remove `SegmentInsertAction` as it is not used anymore. `SegmentTransactionalInsertAction`
is the new incarnation which has been in use for a while.
- Deprecate `MetadataStorageActionHandler.addLog()` and `getLogs()`. These are not used anymore
but need to be retained for backward compatibility of extensions.
- Do not create `druid_taskLog` metadata table anymore.
* #16717 defer provider instatiation
* add license header
* fix style, ignore new class in jacoco as it is still initialization code
---------
Co-authored-by: Alberto Lago Alvarado <albl@sitecore.net>
Changes:
- Break `NewestSegmentFirstIterator` into two parts
- `DatasourceCompactibleSegmentIterator` - this contains all the code from `NewestSegmentFirstIterator`
but now handles a single datasource and allows a priority to be specified
- `PriorityBasedCompactionSegmentIterator` - contains separate iterator for each datasource and
combines the results into a single queue to be used by a compaction search policy
- Update `NewestSegmentFirstPolicy` to use the above new classes
- Cleanup `CompactionStatistics` and `AutoCompactionSnapshot`
- Cleanup `CompactSegments`
- Remove unused methods from `Tasks`
- Remove unneeded `TasksTest`
- Move tests from `NewestSegmentFirstIteratorTest` to `CompactionStatusTest`
and `DatasourceCompactibleSegmentIteratorTest`
* When an ArrayList RAC creates a child RAC, the start and end offsets need to have the offset of parent's start offset
* Defaults the 2nd window bound to CURRENT ROW when only a single bound is specified
* Removes the windowingStrictValidation warning and throws a hard exception when Order By alongside RANGE clause is not provided with UNBOUNDED or CURRENT ROW as both bounds
Changes:
- No functional change
- Add class `TuningConfigBuilder` to build `IndexTuningConfig`, `CompactionTuningConfig`
- Remove old class `ParallelIndexTestingFactory.TuningConfigBuilder`
- Remove some unused fields and methods
Changes
- No functional change
- Remove unused method `IndexTuningConfig.withPartitionsSpec()`
- Remove unused method `ParallelIndexTuningConfig.withPartitionsSpec()`
- Remove redundant method `CompactTask.emitIngestionModeMetrics()`
- Remove Clock argument from `CompactionTask.createDataSchemasForInterval()` as it was only needed
for one test which was just verifying the value passed by the test itself. The code now uses a `Stopwatch`
instead and test simply verifies that the metric has been emitted.
- Other minor cleanup changes
Better fallback strategy when the broker is unable to materialize the subquery's results as frames for estimating the bytes:
a. We don't touch the subquery sequence till we know that we can materialize the result as frames
Description:
Compaction operations issued by the Coordinator currently run using the native query engine.
As majority of the advancements that we are making in batch ingestion are in MSQ, it is imperative
that we support compaction on MSQ to make Compaction more robust and possibly faster.
For instance, we have seen OOM errors in native compaction that MSQ could have handled by its
auto-calculation of tuning parameters.
This commit enables compaction on MSQ to remove the dependency on native engine.
Main changes:
* `DataSourceCompactionConfig` now has an additional field `engine` that can be one of
`[native, msq]` with `native` being the default.
* if engine is MSQ, `CompactSegments` duty assigns all available compaction task slots to the
launched `CompactionTask` to ensure full capacity is available to MSQ. This is to avoid stalling which
could happen in case a fraction of the tasks were allotted and they eventually fell short of the number
of tasks required by the MSQ engine to run the compaction.
* `ClientCompactionTaskQuery` has a new field `compactionRunner` with just one `engine` field.
* `CompactionTask` now has `CompactionRunner` interface instance with its implementations
`NativeCompactinRunner` and `MSQCompactionRunner` in the `druid-multi-stage-query` extension.
The objectmapper deserializes `ClientCompactionRunnerInfo` in `ClientCompactionTaskQuery` to the
`CompactionRunner` instance that is mapped to the specified type [`native`, `msq`].
* `CompactTask` uses the `CompactionRunner` instance it receives to create the indexing tasks.
* `CompactionTask` to `MSQControllerTask` conversion logic checks whether metrics are present in
the segment schema. If present, the task is created with a native group-by query; if not, the task is
issued with a scan query. The `storeCompactionState` flag is set in the context.
* Each created `MSQControllerTask` is launched in-place and its `TaskStatus` tracked to determine the
final status of the `CompactionTask`. The id of each of these tasks is the same as that of `CompactionTask`
since otherwise, the workers will be unable to determine the controller task's location for communication
(as they haven't been launched via the overlord).
In case of few aggregators for example BloomSqlAggregator, BaseVarianceSqlAggregator etc, the aggName is being updated from a0 to a0:agg, breaching the contract as we would expect the aggName as the name which is passed. This is causing a mismatch while creating a column accessor.
This commit aims to correct those violating sql aggregators.
changes:
* fixes a bug with unnest storage adapter not preserving underlying columns dictionary uniqueness when allowing dimension selector cursor
* fixes a bug with unnest on realtime segments with empty rows incorrectly specifying index 0 as the row dictionary value
Add a shuffling based on the resultShuffleSpecFactory after a limit processor depending on the query destination. LimitFrameProcessors currently do not update the partition boosting column, so we also add the boost column to the previous stage, if one is required.
temp fix until CALCITE-6435 gets fixed (released&upgraded to)
added a custom rule (FixIncorrectInExpansionTypes) to fix-up types of the affected literals
added a testcase which will alert on upgrade
* fix equality and typed in filter behavior for numeric match values on string columns
changes:
* EqualityFilter and TypedInfilter numeric match values against string columns will now cast strings to numeric values instead of converting the numeric values directly to string for pure string equality, which is consistent with the casts which are eaten in the SQL layer, as well as classic druid behavior
* added tests to cover numeric equality matching. Double match values in particular would fail to match the string values since `1.0` would become `'1.0'` which does not match `'1'`.