* Update api.md
I have created changes in api call of python according to latest version of requests 2.28.1 library. Along with this there are some irregularities between use of <your-instance> and <hostname> so I have tried to fix that also.
* Update api.md
made some changes in declaring USER and PASSWORD
Fixes#13837.
### Description
This change allows for input source type security in the native task layer.
To enable this feature, the user must set the following property to true:
`druid.auth.enableInputSourceSecurity=true`
The default value for this property is false, which will continue the existing functionality of needing authorization to write to the respective datasource.
When this config is enabled, the users will be required to be authorized for the following resource action, in addition to write permission on the respective datasource.
`new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ`
where `{INPUT_SOURCE_TYPE}` is the type of the input source being used;, http, inline, s3, etc..
Only tasks that provide a non-default implementation of the `getInputSourceResources` method can be submitted when config `druid.auth.enableInputSourceSecurity=true` is set. Otherwise, a 400 error will be thrown.
* smarter nested column index utilization
changes:
* adds skipValueRangeIndexScale and skipValuePredicateIndexScale to ColumnConfig (e.g. DruidProcessingConfig) available as system config via druid.processing.indexes.skipValueRangeIndexScale and druid.processing.indexes.skipValuePredicateIndexScale
* NestedColumnIndexSupplier uses skipValueRangeIndexScale and skipValuePredicateIndexScale to multiply by the total number of rows to be processed to determine the threshold at which we should no longer consider using bitmap indexes because it will be too many operations
* Default values for skipValueRangeIndexScale and skipValuePredicateIndexScale have been initially set to 0.08, but are separate to allow independent tuning
* these are not documented on purpose yet because they are kind of hard to explain, the mainly exist to help conduct larger scale experiments than the jmh benchmarks used to derive the initial set of values
* these changes provide a pretty sweet performance boost for filter processing on nested columns
* Always use file sizes when determining batch ingest splits.
Main changes:
1) Update CloudObjectInputSource and its subclasses (S3, GCS,
Azure, Aliyun OSS) to use SplitHintSpecs in all cases. Previously, they
were only used for prefixes, not uris or objects.
2) Update ExternalInputSpecSlicer (MSQ) to consider file size. Previously,
file size was ignored; all files were treated as equal weight when
determining splits.
A side effect of these changes is that we'll make additional network
calls to find the sizes of objects when users specify URIs or objects
as opposed to prefixes. IMO, this is worth it because it's the only way
to respect the user's split hint and task assignment settings.
Secondary changes:
1) S3, Aliyun OSS: Use getObjectMetadata instead of listObjects to get
metadata for a single object. This is a simpler call that is also
expected to be less expensive.
2) Azure: Fix a bug where getBlobLength did not populate blob
reference attributes, and therefore would not actually retrieve the
blob length.
3) MSQ: Align dynamic slicing logic between ExternalInputSpecSlicer and
TableInputSpecSlicer.
4) MSQ: Adjust WorkerInputs to ensure there is always at least one
worker, even if it has a nil slice.
* Add msqCompatible to testGroupByWithImpossibleTimeFilter.
* Fix tests.
* Add additional tests.
* Remove unused stuff.
* Remove more unused stuff.
* Adjust thresholds.
* Remove irrelevant test.
* Fix comments.
* Fix bug.
* Updates.
* Add a new fault "QueryRuntimeError" to MSQ engine to capture native query errors.
* Fixed bug in MSQ fault tolerance where worker were being retried if `UnexpectedMultiValueDimensionException` was thrown.
* An exception from the query runtime with `org.apache.druid.query` as the package name is thrown as a QueryRuntimeError
changes:
* introduce ColumnFormat to separate physical storage format from logical type. ColumnFormat is now used instead of ColumnCapabilities to get column handlers for segment creation
* introduce new 'auto' type indexer and merger which produces a new common nested format of columns, which is the next logical iteration of the nested column stuff. Essentially this is an automatic type column indexer that produces the most appropriate column for the given inputs, making either STRING, ARRAY<STRING>, LONG, ARRAY<LONG>, DOUBLE, ARRAY<DOUBLE>, or COMPLEX<json>.
* revert NestedDataColumnIndexer, NestedDataColumnMerger, NestedDataColumnSerializer to their version pre #13803 behavior (v4) for backwards compatibility
* fix a bug in RoaringBitmapSerdeFactory if anything actually ever wrote out an empty bitmap using toBytes and then later tried to read it (the nerve!)
* Planning correctly for order by queries on time which previously threw a planning error
* Updating toDruidQueryForExplaining on a query data source if there is a window on the partial query
* select sum(c) on an unnested column now does not return 'Type mismatch' error and works properly
* Making sure an inner join query works properly
* Having on unnested column with a group by now works correctly
* count(*) on an unnested query now works correctly
Due to race conditions, the BrokerServerView may sometimes try to add a segment to a server which has already been removed from the inventory. This results in an NPE and keeps the BrokerServerView from processing all change requests.
With the KubernetesTaskRunner, if a task is manually shutdown via the web console while running or the corresponding k8s job is manually deleted, the thread responsible for overseeing the task gets stuck in a loop because the fabric8 client sends one event to it that the job is null when the job is deleted, but this doesn't pass the condition.
This means that the thread is stuck waiting on a fabric8 event (the job being successful) that will never come up until maxTaskDuration (default 4 hours). If a user of the extension is trying to use a limited taskqueue maxSize, this can cause problems as the k8s executor pool is unable to pick up additional tasks (since threads are stuck waiting on the old tasks that have already been deleted).
This change introduces the concept of input source type security model, proposed in #13837.. With this change, this feature is only available at the SQL layer, but we will expand to native layer in a follow up PR.
To enable this feature, the user must set the following property to true:
druid.auth.enableInputSourceSecurity=true
The default value for this property is false, which will continue the existing functionality of having the usage all external sources being authorized against the hardcoded resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ
When this config is enabled, the users will be required to be authorized for the following resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ
where {INPUT_SOURCE_TYPE} is the type of the input source being used;, http, inline, s3, etc..
Documentation has not been added for the feature as it is not complete at the moment, as we still need to enable this for the native layer in a follow up pr.
While using intermediateSuperSorterStorageMaxLocalBytes the super sorter was retaining references of the memory allocator.
The fix clears the current outputChannel when close() is called on the ComposingWritableFrameChannel.java
This PR is a follow-up to #13819 so that the Tuple sketch functionality can be used in SQL for both ingestion using Multi-Stage Queries (MSQ) and also for analytic queries against Tuple sketch columns.
* Reworking s3 connector with
1. Adding retries
2. Adding max fetch size
3. Using s3Utils for most of the api's
4. Fixing bugs in DurableStorageCleaner
5. Moving to Iterator for listDir call
array columns!
changes:
* add support for storing nested arrays of string, long, and double values as specialized nested columns instead of breaking them into separate element columns
* nested column type mimic behavior means that columns ingested with only root arrays of primitive values will be ARRAY typed columns
* neat test refactor stuff
* add v4 segment test
* add array element indexes
* add tests for unnest and array columns
* fix unnest column value selector cursor handling of null and empty arrays