druid/docs/querying/virtual-columns.md

192 lines
7.5 KiB
Markdown

---
id: virtual-columns
title: "Virtual columns"
---
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
> Apache Druid supports two query languages: [Druid SQL](sql.md) and [native queries](querying.md).
> This document describes the native
> language. For information about functions available in SQL, refer to the
> [SQL documentation](sql-scalar.md).
Virtual columns are queryable column "views" created from a set of columns during a query.
A virtual column can potentially draw from multiple underlying columns, although a virtual column always presents itself as a single column.
Virtual columns can be referenced by their output names to be used as [dimensions](./dimensionspecs.md) or as inputs to [filters](./filters.md) and [aggregators](./aggregations.md).
Each Apache Druid query can accept a list of virtual columns as a parameter. The following scan query is provided as an example:
```
{
"queryType": "scan",
"dataSource": "page_data",
"columns":[],
"virtualColumns": [
{
"type": "expression",
"name": "fooPage",
"expression": "concat('foo' + page)",
"outputType": "STRING"
},
{
"type": "expression",
"name": "tripleWordCount",
"expression": "wordCount * 3",
"outputType": "LONG"
}
],
"intervals": [
"2013-01-01/2019-01-02"
]
}
```
## Virtual column types
### Expression virtual column
Expression virtual columns use Druid's native [expression](math-expr.md) system to allow defining query time
transforms of inputs from one or more columns.
The expression virtual column has the following syntax:
```json
{
"type": "expression",
"name": <name of the virtual column>,
"expression": <row expression>,
"outputType": <output value type of expression>
}
```
|property|description|required?|
|--------|-----------|---------|
|type|Must be `"expression"` to indicate that this is an expression virtual column.|yes|
|name|The name of the virtual column.|yes|
|expression|An [expression](math-expr.md) that takes a row as input and outputs a value for the virtual column.|yes|
|outputType|The expression's output will be coerced to this type. Can be LONG, FLOAT, DOUBLE, STRING, ARRAY types, or COMPLEX types.|no, default is FLOAT|
### Nested field virtual column
The nested field virtual column is an optimized virtual column that can provide direct access into various paths of
a `COMPLEX<json>` column, including using their indexes.
This virtual column is used for the SQL operators `JSON_VALUE` (if `processFromRaw` is set to false) or `JSON_QUERY`
(if `processFromRaw` is true), and accepts 'JSONPath' or 'jq' syntax string representations of paths, or a parsed
list of "path parts" in order to determine what should be selected from the column.
You can define a nested field virtual column with any of the following equivalent syntaxes. The examples all produce
the same output value, with each example showing a different way to specify how to access the nested value. The first
is using JSONPath syntax `path`, the second with a jq `path`, and the third uses `pathParts`.
```json
{
"type": "nested-field",
"columnName": "shipTo",
"outputName": "v0",
"expectedType": "STRING",
"path": "$.phoneNumbers[1].number"
}
```
```json
{
"type": "nested-field",
"columnName": "shipTo",
"outputName": "v1",
"expectedType": "STRING",
"path": ".phoneNumbers[1].number",
"useJqSyntax": true
}
```
```json
{
"type": "nested-field",
"columnName": "shipTo",
"outputName": "v2",
"expectedType": "STRING",
"pathParts": [
{
"type": "field",
"field": "phoneNumbers"
},
{
"type": "arrayElement",
"index": 1
},
{
"type": "field",
"field": "number"
}
]
}
```
|property|description|required?|
|--------|-----------|---------|
|type|Must be `"nested-field"` to indicate that this is a nested field virtual column.|yes|
|columnName|The name of the `COMPLEX<json>` input column.|yes|
|outputName|The name of the virtual column.|yes|
|expectedType|The native Druid output type of the column, Druid will coerce output to this type if it does not match the underlying data. This can be `STRING`, `LONG`, `FLOAT`, `DOUBLE`, or `COMPLEX<json>`. Extracting `ARRAY` types is not yet supported.|no, default `STRING`|
|pathParts|The parsed path parts used to locate the nested values. `path` will be translated into `pathParts` internally. One of `path` or `pathParts` must be set|no, if `path` is defined|
|processFromRaw|If set to true, the virtual column will process the "raw" JSON data to extract values rather than using an optimized "literal" value selector. This option allows extracting non-literal values (such as nested JSON objects or arrays) as a `COMPLEX<json>` at the cost of much slower performance.|no, default false|
|path|'JSONPath' (or 'jq') syntax path. One of `path` or `pathParts` must be set. |no, if `pathParts` is defined|
|useJqSyntax|If true, parse `path` using 'jq' syntax instead of 'JSONPath'.|no, default is false|
#### Nested path part
Specify `pathParts` as an array of objects that describe each component of the path to traverse. Each object can take the following properties:
|property|description|required?|
|--------|-----------|---------|
|type|Must be 'field' or 'arrayElement'. Use `field` when accessing a specific field in a nested structure. Use `arrayElement` when accessing a specific integer position of an array (zero based).|yes|
|field|The name of the 'field' in a 'field' `type` path part|yes, if `type` is 'field'|
|index|The array element index if `type` is `arrayElement`|yes, if `type` is 'arrayElement'|
See [Nested columns](./nested-columns.md) for more information on ingesting and storing nested data.
### List filtered virtual column
This virtual column provides an alternative way to use
['list filtered' dimension spec](./dimensionspecs.md#filtered-dimensionspecs) as a virtual column. It has optimized
access to the underlying column value indexes that can provide a small performance improvement in some cases.
```json
{
"type": "mv-filtered",
"name": "filteredDim3",
"delegate": "dim3",
"values": ["hello", "world"],
"isAllowList": true
}
```
|property|description|required?|
|--------|-----------|---------|
|type|Must be `"mv-filtered"` to indicate that this is a list filtered virtual column.|yes|
|name|The output name of the virtual column|yes|
|delegate|The name of the multi-value STRING input column to filter|yes|
|values|Set of STRING values to allow or deny|yes|
|isAllowList|If true, the output of the virtual column will be limited to the set specified by `values`, else it will provide all values _except_ those specified.|No, default true|