druid/docs/content/ingestion/index.md

12 KiB

layout
doc_page

Ingestion Spec

A Druid ingestion spec consists of 3 components:

{
  "dataSchema" : {...}
  "ioConfig" : {...}
  "tuningConfig" : {...}
}
Field Type Description Required
dataSchema JSON Object Specifies the the schema of the incoming data. All ingestion specs can share the same dataSchema. yes
ioConfig JSON Object Specifies where the data is coming from and where the data is going. This object will vary with the ingestion method. yes
tuningConfig JSON Object Specifies how to tune various ingestion parameters. This object will vary with the ingestion method. no

DataSchema

An example dataSchema is shown below:

"dataSchema" : {
  "dataSource" : "wikipedia",
  "parser" : {
    "type" : "string",
    "parseSpec" : {
      "format" : "json",
      "timestampSpec" : {
        "column" : "timestamp",
        "format" : "auto"
      },
      "dimensionsSpec" : {
        "dimensions": ["page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","country","region","city"],
        "dimensionExclusions" : [],
        "spatialDimensions" : []
      }
    }
  },
  "metricsSpec" : [{
    "type" : "count",
    "name" : "count"
  }, {
    "type" : "doubleSum",
    "name" : "added",
    "fieldName" : "added"
  }, {
    "type" : "doubleSum",
    "name" : "deleted",
    "fieldName" : "deleted"
  }, {
    "type" : "doubleSum",
    "name" : "delta",
    "fieldName" : "delta"
  }],
  "granularitySpec" : {
    "segmentGranularity" : "DAY",
    "queryGranularity" : "NONE",
    "intervals" : [ "2013-08-31/2013-09-01" ]
  }
}
Field Type Description Required
dataSource String The name of the ingested datasource. Datasources can be thought of as tables. yes
parser JSON Object Specifies how ingested data can be parsed. yes
metricsSpec JSON Object array A list of aggregators. yes
granularitySpec JSON Object Specifies how to create segments and roll up data. yes

Parser

If type is not included, the parser defaults to string.

String Parser

Field Type Description Required
type String This should say string. no
parseSpec JSON Object Specifies the format of the data. yes

Protobuf Parser

Field Type Description Required
type String This should say protobuf. no
parseSpec JSON Object Specifies the format of the data. yes

Avro Stream Parser

This is for realtime ingestion.

Field Type Description Required
type String This should say avro_stream. no
avroBytesDecoder JSON Object Specifies how to decode bytes to Avro record. yes
parseSpec JSON Object Specifies the format of the data. yes

For example, using Avro stream parser with schema repo Avro bytes decoder:

"parser" : {
  "type" : "avro_stream",
  "avroBytesDecoder" : {
    "type" : "schema_repo",
    "subjectAndIdConverter" : {
      "type" : "avro_1124",
      "topic" : "${YOUR_TOPIC}"
    },
    "schemaRepository" : {
      "type" : "avro_1124_rest_client",
      "url" : "${YOUR_SCHEMA_REPO_END_POINT}",
    }
  },
  "parsSpec" : {
    "format" : "timeAndDims",
    "timestampSpec" : {},
    "dimensionsSpec" : {}
  }
}

Avro Bytes Decoder

If type is not included, the avroBytesDecoder defaults to schema_repo.

SchemaRepo Based Avro Bytes Decoder

This Avro bytes decoder first extract subject and id from input message bytes, then use them to lookup the Avro schema with which to decode Avro record from bytes. Details can be found in schema repo and AVRO-1124. You will need an http service like schema repo to hold the avro schema. Towards schema registration on the message producer side, you can refer to io.druid.data.input.AvroStreamInputRowParserTest#testParse().

Field Type Description Required
type String This should say schema_repo. no
subjectAndIdConverter JSON Object Specifies the how to extract subject and id from message bytes. yes
schemaRepository JSON Object Specifies the how to lookup Avro schema from subject and id. yes
Avro-1124 Subject And Id Converter
Field Type Description Required
type String This should say avro_1124. no
topic String Specifies the topic of your kafka stream. yes
Avro-1124 Schema Repository
Field Type Description Required
type String This should say avro_1124_rest_client. no
url String Specifies the endpoint url of your Avro-1124 schema repository. yes

Avro Hadoop Parser

This is for batch ingestion using the HadoopDruidIndexer. The inputFormat of inputSpec in ioConfig must be set to "io.druid.data.input.avro.AvroValueInputFormat". You may want to set Avro reader's schema in jobProperties in tuningConfig, eg: "avro.schema.path.input.value": "/path/to/your/schema.avsc" or "avro.schema.input.value": "your_schema_JSON_object", if reader's schema is not set, the schema in Avro object container file will be used, see Avro specification.

Field Type Description Required
type String This should say avro_hadoop. no
parseSpec JSON Object Specifies the format of the data. yes
fromPigAvroStorage Boolean Specifies whether the data file is stored using AvroStorage. no(default == false)

For example, using Avro Hadoop parser with custom reader's schema file:

{
  "type" : "index_hadoop",
  "hadoopDependencyCoordinates" : ["io.druid.extensions:druid-avro-extensions"],
  "spec" : {
    "dataSchema" : {
      "dataSource" : "",
      "parser" : {
        "type" : "avro_hadoop",
        "parsSpec" : {
          "format" : "timeAndDims",
          "timestampSpec" : {},
          "dimensionsSpec" : {}
        }
      }
    },
    "ioConfig" : {
      "type" : "hadoop",
      "inputSpec" : {
        "type" : "static",
        "inputFormat": "io.druid.data.input.avro.AvroValueInputFormat",
        "paths" : ""
      }
    },
    "tuningConfig" : {
       "jobProperties" : {
          "avro.schema.path.input.value" : "/path/to/my/schema.avsc",
      }
    }
  }
}

ParseSpec

If format is not included, the parseSpec defaults to tsv.

JSON ParseSpec

Field Type Description Required
format String This should say json. no
timestampSpec JSON Object Specifies the column and format of the timestamp. yes
dimensionsSpec JSON Object Specifies the dimensions of the data. yes
flattenSpec JSON Object Specifies flattening configuration for nested JSON data. See Flattening JSON for more info. no

JSON Lowercase ParseSpec

This is a special variation of the JSON ParseSpec that lower cases all the column names in the incoming JSON data. This parseSpec is required if you are updating to Druid 0.7.x from Druid 0.6.x, are directly ingesting JSON with mixed case column names, do not have any ETL in place to lower case those column names, and would like to make queries that include the data you created using 0.6.x and 0.7.x.

Field Type Description Required
format String This should say jsonLowercase. yes
timestampSpec JSON Object Specifies the column and format of the timestamp. yes
dimensionsSpec JSON Object Specifies the dimensions of the data. yes

CSV ParseSpec

Field Type Description Required
format String This should say csv. yes
timestampSpec JSON Object Specifies the column and format of the timestamp. yes
dimensionsSpec JSON Object Specifies the dimensions of the data. yes
listDelimiter String A custom delimiter for multi-value dimensions. no (default == ctrl+A)
columns JSON array Specifies the columns of the data. yes

TSV ParseSpec

Field Type Description Required
format String This should say tsv. yes
timestampSpec JSON Object Specifies the column and format of the timestamp. yes
dimensionsSpec JSON Object Specifies the dimensions of the data. yes
delimiter String A custom delimiter for data values. no (default == \t)
listDelimiter String A custom delimiter for multi-value dimensions. no (default == ctrl+A)
columns JSON String array Specifies the columns of the data. yes

Timestamp Spec

Field Type Description Required
column String The column of the timestamp. yes
format String iso, millis, posix, auto or any Joda time format. no (default == 'auto'

DimensionsSpec

Field Type Description Required
dimensions JSON String array The names of the dimensions. If this is an empty array, Druid will treat all columns that are not timestamp or metric columns as dimension columns. yes
dimensionExclusions JSON String array The names of dimensions to exclude from ingestion. no (default == []
spatialDimensions JSON Object array An array of spatial dimensions no (default == []

GranularitySpec

The default granularity spec is uniform.

Uniform Granularity Spec

This spec is used to generated segments with uniform intervals.

Field Type Description Required
type string The type of granularity spec. no (default == 'uniform')
segmentGranularity string The granularity to create segments at. no (default == 'DAY')
queryGranularity string The minimum granularity to be able to query results at and the granularity of the data inside the segment. E.g. a value of "minute" will mean that data is aggregated at minutely granularity. That is, if there are collisions in the tuple (minute(timestamp), dimensions), then it will aggregate values together using the aggregators instead of storing individual rows. no (default == 'NONE')
intervals string A list of intervals for the raw data being ingested. Ignored for real-time ingestion. yes for batch, no for real-time

Arbitrary Granularity Spec

This spec is used to generate segments with arbitrary intervals (it tries to create evenly sized segments). This spec is not supported for real-time processing.

Field Type Description Required
type string The type of granularity spec. no (default == 'uniform')
queryGranularity string The minimum granularity to be able to query results at and the granularity of the data inside the segment. E.g. a value of "minute" will mean that data is aggregated at minutely granularity. That is, if there are collisions in the tuple (minute(timestamp), dimensions), then it will aggregate values together using the aggregators instead of storing individual rows. no (default == 'NONE')
intervals string A list of intervals for the raw data being ingested. Ignored for real-time ingestion. yes for batch, no for real-time

IO Config

Real-time Ingestion: See Real-time ingestion. Batch Ingestion: See Batch ingestion

Ingestion Spec

Real-time Ingestion: See Real-time ingestion. Batch Ingestion: See Batch ingestion

Evaluating Timestamp, Dimensions and Metrics

Druid will interpret dimensions, dimension exclusions, and metrics in the following order:

  • Any column listed in the list of dimensions is treated as a dimension.
  • Any column listed in the list of dimension exclusions is excluded as a dimension.
  • The timestamp column and columns/fieldNames required by metrics are excluded by default.
  • If a metric is also listed as a dimension, the metric must have a different name than the dimension name.