18 KiB
id | sidebar_label | title |
---|---|---|
tutorial-unnest-datasource | Using the unnest datasource | Tutorial: Unnest data in a column |
If you're looking for information about how to unnest
COMPLEX<json>
columns, see Nested columns.
The unnest datasource is currently only available as part of a native query.
This tutorial demonstrates how to use the unnest datasource to unnest a column that has data stored in arrays. For example, if you have a column named dim3
with values like [a,b]
or [c,d,f]
, the unnest datasource can output the data to a new column with individual rows that contain single values like a
and b
. When doing this, be mindful of the following:
- Unnesting data can dramatically increase the total number of rows.
- You cannot unnest an array within an array.
You can use the Druid console or API to unnest data. To start though, you may want to use the Druid console so that viewing the nested and unnested data is easier.
Prerequisites
You need a Druid cluster, such as the micro-quickstart. The cluster does not need any existing datasources. You'll load a basic one as part of this tutorial.
Load data with nested values
The data you're ingesting contains a handful of rows that resemble the following:
t:2000-01-01, m1:1.0, m2:1.0, dim1:, dim2:[a], dim3:[a,b]
The focus of this tutorial is on the nested array of values in dim3
.
You can load this data by running a query for SQL-based ingestion or submitting a JSON-based ingestion spec. The example loads data into a table named nested_data
:
REPLACE INTO nested_data OVERWRITE ALL
SELECT
TIME_PARSE("t") as __time,
dim1,
dim2,
dim3,
m1,
m2
FROM TABLE(
EXTERN(
'{"type":"inline","data":"{\"t\":\"2000-01-01\",\"m1\":\"1.0\",\"m2\":\"1.0\",\"dim1\":\"\",\"dim2\":[\"a\"],\"dim3\":[\"a\",\"b\"]},\n{\"t\":\"2000-01-02\",\"m1\":\"2.0\",\"m2\":\"2.0\",\"dim1\":\"10.1\",\"dim2\":[],\"dim3\":[\"c\",\"d\"]},\n{\"t\":\"2000-01-03\",\"m1\":\"3.0\",\"m2\":\"3.0\",\"dim1\":\"2\",\"dim2\":[\"\"],\"dim3\":[\"e\",\"f\"]},\n{\"t\":\"2001-01-01\",\"m1\":\"4.0\",\"m2\":\"4.0\",\"dim1\":\"1\",\"dim2\":[\"a\"],\"dim3\":[\"g\",\"h\"]},\n{\"t\":\"2001-01-02\",\"m1\":\"5.0\",\"m2\":\"5.0\",\"dim1\":\"def\",\"dim2\":[\"abc\"],\"dim3\":[\"i\",\"j\"]},\n{\"t\":\"2001-01-03\",\"m1\":\"6.0\",\"m2\":\"6.0\",\"dim1\":\"abc\",\"dim2\":[\"a\"],\"dim3\":[\"k\",\"l\"]},\n{\"t\":\"2001-01-02\",\"m1\":\"5.0\",\"m2\":\"5.0\",\"dim1\":\"def\",\"dim2\":[\"abc\"],\"dim3\":[\"m\",\"n\"]}"}',
'{"type":"json"}',
'[{"name":"t","type":"string"},{"name":"dim1","type":"string"},{"name":"dim2","type":"string"},{"name":"dim3","type":"string"},{"name":"m1","type":"float"},{"name":"m2","type":"double"}]'
)
)
PARTITIONED BY YEAR
{
"type": "index_parallel",
"spec": {
"ioConfig": {
"type": "index_parallel",
"inputSource": {
"type": "inline",
"data": "{\"t\":\"2000-01-01\",\"m1\":\"1.0\",\"m2\":\"1.0\",\"dim1\":\"\",\"dim2\":[\"a\"],\"dim3\":[\"a\",\"b\"]},\n{\"t\":\"2000-01-02\",\"m1\":\"2.0\",\"m2\":\"2.0\",\"dim1\":\"10.1\",\"dim2\":[],\"dim3\":[\"c\",\"d\"]},\n{\"t\":\"2000-01-03\",\"m1\":\"3.0\",\"m2\":\"3.0\",\"dim1\":\"2\",\"dim2\":[\"\"],\"dim3\":[\"e\",\"f\"]},\n{\"t\":\"2001-01-01\",\"m1\":\"4.0\",\"m2\":\"4.0\",\"dim1\":\"1\",\"dim2\":[\"a\"],\"dim3\":[\"g\",\"h\"]},\n{\"t\":\"2001-01-02\",\"m1\":\"5.0\",\"m2\":\"5.0\",\"dim1\":\"def\",\"dim2\":[\"abc\"],\"dim3\":[\"i\",\"j\"]},\n{\"t\":\"2001-01-03\",\"m1\":\"6.0\",\"m2\":\"6.0\",\"dim1\":\"abc\",\"dim2\":[\"a\"],\"dim3\":[\"k\",\"l\"]},\n{\"t\":\"2001-01-02\",\"m1\":\"5.0\",\"m2\":\"5.0\",\"dim1\":\"def\",\"dim2\":[\"abc\"],\"dim3\":[\"m\",\"n\"]}"
},
"inputFormat": {
"type": "json"
}
},
"tuningConfig": {
"type": "index_parallel",
"partitionsSpec": {
"type": "dynamic"
}
},
"dataSchema": {
"dataSource": "nested_data",
"granularitySpec": {
"type": "uniform",
"queryGranularity": "NONE",
"rollup": false,
"segmentGranularity": "YEAR"
},
"timestampSpec": {
"column": "t",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [
"dim1",
"dim2",
"dim3"
]
},
"metricsSpec": [
{
"name": "m1",
"type": "floatSum",
"fieldName": "m1"
},
{
"name": "m2",
"type": "doubleSum",
"fieldName": "m2"
}
]
}
}
}
View the data
Now that the data is loaded, run the following query:
SELECT * FROM nested_data
In the results, notice that the column named dim3
has nested values like ["a","b"]
. The example queries that follow unnest dim3
and run queries, such as Scan.
Unnest a single column
The following section shows examples of how you can use the unnest datasource in queries. They all use the nested_data
table you created earlier in the tutorial.
Scan query
The following native Scan query returns the rows of the datasource and unnests the values in the dim3
column by using the unnest
datasource type:
Show the query
{
"queryType": "scan",
"dataSource": {
"type": "unnest",
"base": {
"type": "table",
"name": "nested_data"
},
"column": "dim3",
"outputName": "unnest-dim3",
"allowList": []
},
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"limit": 100,
"columns": [
"__time",
"dim1",
"dim2",
"dim3",
"m1",
"m2",
"unnest-dim3"
],
"legacy": false,
"granularity": {
"type": "all"
},
"context": {
"debug": true,
"useCache": false
}
}
In the results, notice that there are more rows than before and an additional column named unnest-dim3
. The values of unnest-dim3
are the same as the dim3
column except the nested values are no longer nested and are each a separate record.
With the dataSource.allowList
parameter, you can unnest a subset of a column. Set the value of allowList
to ["a","b"]
and run the query again. Only a subset of rows are returned based on the values you allowed.
You can also implement filters. For example, you can add the following to the Scan query to filter results to only rows that have the values "a"
or "abc"
in "dim2"
:
"filter": {
"type": "in",
"dimension": "dim2",
"values": [
"a",
"abc",
]
},
groupBy query
The following query returns an unnested version of the column dim3
as the column unnest-dim3
sorted in descending order.
Show the query
{
"queryType": "groupBy",
"dataSource": {
"type": "unnest",
"base": "nested_data",
"column": "dim3",
"outputName": "unnest-dim3",
"allowList": []
},
"intervals": ["-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"],
"granularity": "all",
"dimensions": [
"unnest-dim3"
],
"limitSpec": {
"type": "default",
"columns": [
{
"dimension": "unnest-dim3",
"direction": "descending"
}
],
"limit": 1001
},
"context": {
"debug": true
}
}
topN query
The example topN query unnests dim3
into the column unnest-dim3
. The query uses the unnested column as the dimension for the topN query. The results are outputted to a column named topN-unnest-d3
and are sorted numerically in ascending order based on the column a0
, an aggregate value representing the minimum of m1
.
Show the query
{
"queryType": "topN",
"dataSource": {
"type": "unnest",
"base": {
"type": "table",
"name": "nested_data"
},
"column": "dim3",
"outputName": "unnest-dim3",
"allowList": null
},
"dimension": {
"type": "default",
"dimension": "unnest-dim3",
"outputName": "topN-unnest-d3",
"outputType": "STRING"
},
"metric": {
"type": "inverted",
"metric": {
"type": "numeric",
"metric": "a0"
}
},
"threshold": 3,
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"granularity": {
"type": "all"
},
"aggregations": [
{
"type": "floatMin",
"name": "a0",
"fieldName": "m1"
}
],
"context": {
"debug": true
}
}
Unnest with a JOIN query
This query joins the nested_data
table with itself and outputs the unnested data into a new column called unnest-dim3
.
Show the query
{
"queryType": "scan",
"dataSource": {
"type": "unnest",
"base": {
"type": "join",
"left": {
"type": "table",
"name": "nested_data"
},
"right": {
"type": "query",
"query": {
"queryType": "scan",
"dataSource": {
"type": "table",
"name": "nested_data"
},
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"virtualColumns": [
{
"type": "expression",
"name": "v0",
"expression": "\"m2\"",
"outputType": "FLOAT"
}
],
"resultFormat": "compactedList",
"columns": [
"__time",
"dim1",
"dim2",
"dim3",
"m1",
"m2",
"v0"
],
"legacy": false,
"context": {
"sqlOuterLimit": 1001,
"useNativeQueryExplain": true
},
"granularity": {
"type": "all"
}
}
},
"rightPrefix": "j0.",
"condition": "(\"m1\" == \"j0.v0\")",
"joinType": "INNER"
},
"column": "dim3",
"outputName": "unnest-dim3",
"allowList": []
},
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"resultFormat": "compactedList",
"limit": 1001,
"columns": [
"__time",
"dim1",
"dim2",
"dim3",
"j0.__time",
"j0.dim1",
"j0.dim2",
"j0.dim3",
"j0.m1",
"j0.m2",
"m1",
"m2",
"unnest-dim3"
],
"legacy": false,
"context": {
"sqlOuterLimit": 1001,
"useNativeQueryExplain": true
},
"granularity": {
"type": "all"
}
}
Unnest multiple columns
You can use a single unnest datasource to unnest multiple columns. Be careful when doing this though because it can lead to a very large number of new rows.
Load data with two columns of nested values
Ingest this new data into a table called nested_data2
:
REPLACE INTO "nested_data2" OVERWRITE ALL
SELECT
TIME_PARSE("t") as __time,
"dim1",
"dim2",
"dim3",
"m1",
"m2"
FROM TABLE(
EXTERN(
'{"type":"inline","data":"{\"t\":\"2000-01-01\",\"m1\":\"1.0\",\"m2\":\"1.0\",\"dim1\":\"\",\"dim2\":[\"x\",\"y\"],\"dim3\":[\"a\",\"b\"]},\n{\"t\":\"2000-01-02\",\"m1\":\"2.0\",\"m2\":\"2.0\",\"dim1\":\"10.1\",\"dim2\":[\"e\",\"f\"],\"dim3\":[\"a\",\"b\",\"c\",\"d\"]}"}',
'{"type":"json"}',
'[{"name":"t","type":"string"},{"name":"dim1","type":"string"},{"name":"dim2","type":"string"},{"name":"dim3","type":"string"},{"name":"m1","type":"float"},{"name":"m2","type":"double"}]'
)
)
PARTITIONED BY YEAR
{
"type": "index_parallel",
"spec": {
"ioConfig": {
"type": "index_parallel",
"inputSource": {
"type": "inline",
"data": "{\"t\":\"2000-01-01\",\"m1\":\"1.0\",\"m2\":\"1.0\",\"dim1\":\"\",\"dim2\":[\"x\",\"y\"],\"dim3\":[\"a\",\"b\"]},\n{\"t\":\"2000-01-02\",\"m1\":\"2.0\",\"m2\":\"2.0\",\"dim1\":\"10.1\",\"dim2\":[\"e\",\"f\"],\"dim3\":[\"a\",\"b\",\"c\",\"d\"]}"
},
"inputFormat": {
"type": "json"
}
},
"tuningConfig": {
"type": "index_parallel",
"partitionsSpec": {
"type": "dynamic"
}
},
"dataSchema": {
"dataSource": "nested_data2",
"granularitySpec": {
"type": "uniform",
"queryGranularity": "NONE",
"rollup": false,
"segmentGranularity": "YEAR"
},
"timestampSpec": {
"column": "t",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [
"dim1",
"dim2",
"dim3"
]
},
"metricsSpec": [
{
"name": "m1",
"type": "floatSum",
"fieldName": "m1"
},
{
"name": "m2",
"type": "doubleSum",
"fieldName": "m2"
}
]
}
}
}
Unnest nested_data2
The following query performs two unnests. It unnests dim3
into a column named unnest-dim3
. It also performs an unnest on dim2
and outputs the results to unnest-dim2
. You can then treat the combination of unnest-dim3
and unnest-dim2
as Cartesian products.
When you run the query, pay special attention to how the total number of rows has grown drastically. The source data has 2 rows. The unnested data has 12 rows, (2 x 2) + (2 x 4).
Show the query
{
"queryType": "scan",
"dataSource": {
"type": "unnest",
"base": {
"type": "unnest",
"base": {
"type": "table",
"name": "nested_data2"
},
"column": "dim3",
"outputName": "unnest-dim3",
"allowList": []
},
"column": "dim2",
"outputName": "unnest-dim2",
"allowList": []
},
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"limit": 1000,
"columns": [
"__time",
"dim1",
"dim2",
"dim3",
"m1",
"m2",
"unnest-dim3",
"unnest-dim2"
],
"legacy": false,
"granularity": {
"type": "all"
},
"context": {
"debug": true,
"useCache": false
}
}
Unnest inline datasource
You can also use the unnest
datasource to unnest an inline datasource. The following query takes the row [1,2,3]
in the column inline_data
that is provided inline within the query and returns it as unnested values in the output
column:
Show the query
{
"queryType": "scan",
"dataSource": {
"type": "unnest",
"base": {
"type": "inline",
"columnNames": [
"inline_data"
],
"columnTypes": [
"long_array"
],
"rows": [
[
[1,2,3]
]
]
},
"column": "inline_data",
"outputName": "output",
"allowList": []
},
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"resultFormat": "compactedList",
"limit": 1001,
"columns": [
"inline_data",
"output"
],
"legacy": false,
"granularity": {
"type": "all"
}
}
Unnest a virtual column
The unnest
datasource supports unnesting a virtual columns, which is a queryable composite column that can draw data from multiple source columns.
The following Scan query uses the nested_data2
table you created in Load data with two columns of nested values. It returns the columns unnest-v0
and m1
. The unnest-v0
column is the unnested version of the virtual column v0
, which contains an array of the dim2
and dim3
columns.
Show the query
{
"queryType": "scan",
"dataSource":{
"type": "unnest",
"base": {
"type": "table",
"name": "nested_data2"
},
"column": "v0",
"outputName": "unnest-v0"
}
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.096Z/146140482-04-24T15:36:27.903Z"
]
},
"virtualColumns": [
{
"type": "expression",
"name": "v0",
"expression": "array(\"dim2\",\"dim3\")",
"outputType": "ARRAY<STRING>"
}
],
"resultFormat": "compactedList",
"limit": 1001,
"columns": [
"unnest-v0",
"m1"
],
"legacy": false,
"context": {
"populateCache": false,
"queryId": "d273facb-08cc-4de7-ac0b-d0b82173e531",
"sqlOuterLimit": 1001,
"sqlQueryId": "d273facb-08cc-4de7-ac0b-d0b82173e531",
"useCache": false,
"useNativeQueryExplain": true
},
"granularity": {
"type": "all"
}
}
Learn more
For more information about unnest
and other datasources, see Datasources.