mirror of https://github.com/apache/druid.git
157 lines
6.3 KiB
Markdown
157 lines
6.3 KiB
Markdown
---
|
|
id: tutorial-transform-spec
|
|
title: Transform input data
|
|
sidebar_label: Transform input data
|
|
---
|
|
|
|
<!--
|
|
~ Licensed to the Apache Software Foundation (ASF) under one
|
|
~ or more contributor license agreements. See the NOTICE file
|
|
~ distributed with this work for additional information
|
|
~ regarding copyright ownership. The ASF licenses this file
|
|
~ to you under the Apache License, Version 2.0 (the
|
|
~ "License"); you may not use this file except in compliance
|
|
~ with the License. You may obtain a copy of the License at
|
|
~
|
|
~ http://www.apache.org/licenses/LICENSE-2.0
|
|
~
|
|
~ Unless required by applicable law or agreed to in writing,
|
|
~ software distributed under the License is distributed on an
|
|
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
~ KIND, either express or implied. See the License for the
|
|
~ specific language governing permissions and limitations
|
|
~ under the License.
|
|
-->
|
|
|
|
|
|
This tutorial will demonstrate how to use transform specs to filter and transform input data during ingestion.
|
|
|
|
For this tutorial, we'll assume you've already downloaded Apache Druid as described in
|
|
the [single-machine quickstart](index.md) and have it running on your local machine.
|
|
|
|
It will also be helpful to have finished [Load a file](../tutorials/tutorial-batch.md) and [Query data](../tutorials/tutorial-query.md) tutorials.
|
|
|
|
## Sample data
|
|
|
|
We've included sample data for this tutorial at `quickstart/tutorial/transform-data.json`, reproduced here for convenience:
|
|
|
|
```json
|
|
{"timestamp":"2018-01-01T07:01:35Z","animal":"octopus", "location":1, "number":100}
|
|
{"timestamp":"2018-01-01T05:01:35Z","animal":"mongoose", "location":2,"number":200}
|
|
{"timestamp":"2018-01-01T06:01:35Z","animal":"snake", "location":3, "number":300}
|
|
{"timestamp":"2018-01-01T01:01:35Z","animal":"lion", "location":4, "number":300}
|
|
```
|
|
|
|
## Load data with transform specs
|
|
|
|
We will ingest the sample data using the following spec, which demonstrates the use of transform specs:
|
|
|
|
```json
|
|
{
|
|
"type" : "index_parallel",
|
|
"spec" : {
|
|
"dataSchema" : {
|
|
"dataSource" : "transform-tutorial",
|
|
"timestampSpec": {
|
|
"column": "timestamp",
|
|
"format": "iso"
|
|
},
|
|
"dimensionsSpec" : {
|
|
"dimensions" : [
|
|
"animal",
|
|
{ "name": "location", "type": "long" }
|
|
]
|
|
},
|
|
"metricsSpec" : [
|
|
{ "type" : "count", "name" : "count" },
|
|
{ "type" : "longSum", "name" : "number", "fieldName" : "number" },
|
|
{ "type" : "longSum", "name" : "triple-number", "fieldName" : "triple-number" }
|
|
],
|
|
"granularitySpec" : {
|
|
"type" : "uniform",
|
|
"segmentGranularity" : "week",
|
|
"queryGranularity" : "minute",
|
|
"intervals" : ["2018-01-01/2018-01-03"],
|
|
"rollup" : true
|
|
},
|
|
"transformSpec": {
|
|
"transforms": [
|
|
{
|
|
"type": "expression",
|
|
"name": "animal",
|
|
"expression": "concat('super-', animal)"
|
|
},
|
|
{
|
|
"type": "expression",
|
|
"name": "triple-number",
|
|
"expression": "number * 3"
|
|
}
|
|
],
|
|
"filter": {
|
|
"type":"or",
|
|
"fields": [
|
|
{ "type": "selector", "dimension": "animal", "value": "super-mongoose" },
|
|
{ "type": "selector", "dimension": "triple-number", "value": "300" },
|
|
{ "type": "selector", "dimension": "location", "value": "3" }
|
|
]
|
|
}
|
|
}
|
|
},
|
|
"ioConfig" : {
|
|
"type" : "index_parallel",
|
|
"inputSource" : {
|
|
"type" : "local",
|
|
"baseDir" : "quickstart/tutorial",
|
|
"filter" : "transform-data.json"
|
|
},
|
|
"inputFormat" : {
|
|
"type" :"json"
|
|
},
|
|
"appendToExisting" : false
|
|
},
|
|
"tuningConfig" : {
|
|
"type" : "index_parallel",
|
|
"partitionsSpec": {
|
|
"type": "dynamic"
|
|
},
|
|
"maxRowsInMemory" : 25000
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
In the transform spec, we have two expression transforms:
|
|
* `super-animal`: prepends "super-" to the values in the `animal` column. This will override the `animal` column with the transformed version, since the transform's name is `animal`.
|
|
* `triple-number`: multiplies the `number` column by 3. This will create a new `triple-number` column. Note that we are ingesting both the original and the transformed column.
|
|
|
|
Additionally, we have an OR filter with three clauses:
|
|
* `super-animal` values that match "super-mongoose"
|
|
* `triple-number` values that match 300
|
|
* `location` values that match 3
|
|
|
|
This filter selects the first 3 rows, and it will exclude the final "lion" row in the input data. Note that the filter is applied after the transformation.
|
|
|
|
Let's submit this task now, which has been included at `quickstart/tutorial/transform-index.json`:
|
|
|
|
```bash
|
|
bin/post-index-task --file quickstart/tutorial/transform-index.json --url http://localhost:8081
|
|
```
|
|
|
|
## Query the transformed data
|
|
|
|
Let's run `bin/dsql` and issue a `select * from "transform-tutorial";` query to see what was ingested:
|
|
|
|
```bash
|
|
dsql> select * from "transform-tutorial";
|
|
┌──────────────────────────┬────────────────┬───────┬──────────┬────────┬───────────────┐
|
|
│ __time │ animal │ count │ location │ number │ triple-number │
|
|
├──────────────────────────┼────────────────┼───────┼──────────┼────────┼───────────────┤
|
|
│ 2018-01-01T05:01:00.000Z │ super-mongoose │ 1 │ 2 │ 200 │ 600 │
|
|
│ 2018-01-01T06:01:00.000Z │ super-snake │ 1 │ 3 │ 300 │ 900 │
|
|
│ 2018-01-01T07:01:00.000Z │ super-octopus │ 1 │ 1 │ 100 │ 300 │
|
|
└──────────────────────────┴────────────────┴───────┴──────────┴────────┴───────────────┘
|
|
Retrieved 3 rows in 0.03s.
|
|
```
|
|
|
|
The "lion" row has been discarded, the `animal` column has been transformed, and we have both the original and transformed `number` column.
|