13 KiB
layout |
---|
default |
Once you have a realtime node working, it is time to load your own data to see how Druid performs.
Druid can ingest data in three ways: via Kafka and a realtime node, via the indexing service, and via the Hadoop batch loader. Data is ingested in realtime using a Firehose.
Create Config Directories
Each type of node needs its own config file and directory, so create them as subdirectories under the druid directory.
mkdir config
mkdir config/realtime
mkdir config/master
mkdir config/compute
mkdir config/broker
Loading Data with Kafka
KafkaFirehoseFactory is how druid communicates with Kafka. Using this Firehose with the right configuration, we can import data into Druid in realtime without writing any code. To load data to a realtime node via Kafka, we'll first need to initialize Zookeeper and Kafka, and then configure and initialize a Realtime node.
Booting Kafka
Instructions for booting a Zookeeper and then Kafka cluster are available here.
- Download Apache Kafka 0.7.2 from http://kafka.apache.org/downloads.html
wget http://apache.spinellicreations.com/incubator/kafka/kafka-0.7.2-incubating/kafka-0.7.2-incubating-src.tgz
tar -xvzf kafka-0.7.2-incubating-src.tgz
cd kafka-0.7.2-incubating-src
- Build Kafka
./sbt update
./sbt package
- Boot Kafka
cat config/zookeeper.properties
bin/zookeeper-server-start.sh config/zookeeper.properties
# in a new console
bin/kafka-server-start.sh config/server.properties
- Launch the console producer (so you can type in JSON kafka messages in a bit)
bin/kafka-console-producer.sh --zookeeper localhost:2181 --topic druidtest
Launching a Realtime Node
- Create a valid configuration file similar to this called config/realtime/runtime.properties:
druid.host=0.0.0.0:8080
druid.port=8080
com.metamx.emitter.logging=true
druid.processing.formatString=processing_%s
druid.processing.numThreads=1
druid.processing.buffer.sizeBytes=10000000
#emitting, opaque marker
druid.service=example
druid.request.logging.dir=/tmp/example/log
druid.realtime.specFile=realtime.spec
com.metamx.emitter.logging=true
com.metamx.emitter.logging.level=debug
# below are dummy values when operating a realtime only node
druid.processing.numThreads=3
com.metamx.aws.accessKey=dummy_access_key
com.metamx.aws.secretKey=dummy_secret_key
druid.pusher.s3.bucket=dummy_s3_bucket
druid.zk.service.host=localhost
druid.server.maxSize=300000000000
druid.zk.paths.base=/druid
druid.database.segmentTable=prod_segments
druid.database.user=user
druid.database.password=diurd
druid.database.connectURI=
druid.host=127.0.0.1:8080
- Create a valid realtime configuration file similar to this called realtime.spec:
[{
"schema" : { "dataSource":"druidtest",
"aggregators":[ {"type":"count", "name":"impressions"},
{"type":"doubleSum","name":"wp","fieldName":"wp"}],
"indexGranularity":"minute",
"shardSpec" : { "type": "none" } },
"config" : { "maxRowsInMemory" : 500000,
"intermediatePersistPeriod" : "PT10m" },
"firehose" : { "type" : "kafka-0.7.2",
"consumerProps" : { "zk.connect" : "localhost:2181",
"zk.connectiontimeout.ms" : "15000",
"zk.sessiontimeout.ms" : "15000",
"zk.synctime.ms" : "5000",
"groupid" : "topic-pixel-local",
"fetch.size" : "1048586",
"autooffset.reset" : "largest",
"autocommit.enable" : "false" },
"feed" : "druidtest",
"parser" : { "timestampSpec" : { "column" : "utcdt", "format" : "iso" },
"data" : { "format" : "json" },
"dimensionExclusions" : ["wp"] } },
"plumber" : { "type" : "realtime",
"windowPeriod" : "PT10m",
"segmentGranularity":"hour",
"basePersistDirectory" : "/tmp/realtime/basePersist",
"rejectionPolicy": {"type": "messageTime"} }
}]
- Launch the realtime node
java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \
-Ddruid.realtime.specFile=config/realtime/realtime.spec \
-classpath lib/*:config/realtime com.metamx.druid.realtime.RealtimeMain
- Paste data into the Kafka console producer
{"utcdt": "2010-01-01T01:01:01", "wp": 1000, "gender": "male", "age": 100}
{"utcdt": "2010-01-01T01:01:02", "wp": 2000, "gender": "female", "age": 50}
{"utcdt": "2010-01-01T01:01:03", "wp": 3000, "gender": "male", "age": 20}
{"utcdt": "2010-01-01T01:01:04", "wp": 4000, "gender": "female", "age": 30}
{"utcdt": "2010-01-01T01:01:05", "wp": 5000, "gender": "male", "age": 40}
- Watch the events as they are ingested by Druid's realtime node
...
2013-06-17 21:41:55,569 INFO [Global--0] com.metamx.emitter.core.LoggingEmitter - Event [{"feed":"metrics","timestamp":"2013-06-17T21:41:55.569Z","service":"example","host":"127.0.0.1","metric":"events/processed","value":5,"user2":"druidtest"}]
...
- In a new console, edit a file called query.body:
{
"queryType": "groupBy",
"dataSource": "druidtest",
"granularity": "all",
"dimensions": [],
"aggregations": [
{ "type": "count", "name": "rows" },
{"type": "longSum", "name": "imps", "fieldName": "impressions"},
{"type": "doubleSum", "name": "wp", "fieldName": "wp"}
],
"intervals": ["2010-01-01T00:00/2020-01-01T00"]
}
- Submit the query via curl
curl -X POST "http://localhost:8080/druid/v2/?pretty" \
-H 'content-type: application/json' -d @query.body
- View Result!
[ {
"timestamp" : "2010-01-01T01:01:00.000Z",
"result" : {
"imps" : 20,
"wp" : 60000.0,
"rows" : 5
}
} ]
Now you're ready for Querying Your Data!
Loading Data with the HadoopDruidIndexer
Historical data can be loaded via a Hadoop job.
The setup for a single node, 'standalone' Hadoop cluster is available at http://hadoop.apache.org/docs/stable/single_node_setup.html.
Setup MySQL
- If you don't already have it, download MySQL Community Server here: http://dev.mysql.com/downloads/mysql/
- Install MySQL
- Create a druid user and database
mysql -u root
GRANT ALL ON druid.* TO 'druid'@'localhost' IDENTIFIED BY 'diurd';
CREATE database druid;
The Master node will create the tables it needs based on its configuration.
Make sure you have ZooKeeper Running
Make sure that you have a zookeeper instance running. If you followed the instructions for Kafka, it is probably running. If you are unsure if you have zookeeper running, try running
ps auxww | grep zoo | grep -v grep
If you get any result back, then zookeeper is most likely running. If you haven't setup Kafka or do not have zookeeper running, then you can download it and start it up with
curl http://www.motorlogy.com/apache/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz -o zookeeper-3.4.5.tar.gz
tar xzf zookeeper-3.4.5.tar.gz
cd zookeeper-3.4.5
cp conf/zoo_sample.cfg conf/zoo.cfg
./bin/zkServer.sh start
cd ..
Launch a Master Node
If you've already setup a realtime node, be aware that although you can run multiple node types on one physical computer, you must assign them unique ports. Having used 8080 for the Realtime node, we use 8081 for the Master.
- Setup a configuration file called config/master/runtime.properties similar to:
druid.host=0.0.0.0:8081
druid.port=8081
com.metamx.emitter.logging=true
druid.processing.formatString=processing_%s
druid.processing.numThreads=1
druid.processing.buffer.sizeBytes=10000000
#emitting, opaque marker
druid.service=example
druid.master.startDelay=PT60s
druid.request.logging.dir=/tmp/example/log
druid.realtime.specFile=realtime.spec
com.metamx.emitter.logging=true
com.metamx.emitter.logging.level=debug
# below are dummy values when operating a realtime only node
druid.processing.numThreads=3
com.metamx.aws.accessKey=dummy_access_key
com.metamx.aws.secretKey=dummy_secret_key
druid.pusher.s3.bucket=dummy_s3_bucket
druid.zk.service.host=localhost
druid.server.maxSize=300000000000
druid.zk.paths.base=/druid
druid.database.segmentTable=prod_segments
druid.database.user=druid
druid.database.password=diurd
druid.database.connectURI=jdbc:mysql://localhost:3306/druid
druid.zk.paths.discoveryPath=/druid/discoveryPath
druid.database.ruleTable=rules
druid.database.configTable=config
# Path on local FS for storage of segments; dir will be created if needed
druid.paths.indexCache=/tmp/druid/indexCache
# Path on local FS for storage of segment metadata; dir will be created if needed
druid.paths.segmentInfoCache=/tmp/druid/segmentInfoCache
- Launch the Master node
java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \
-classpath lib/*:config/master \
com.metamx.druid.http.MasterMain
Launch a Compute/Historical Node
- Create a configuration file in config/compute/runtime.properties similar to:
druid.host=0.0.0.0:8082
druid.port=8082
com.metamx.emitter.logging=true
druid.processing.formatString=processing_%s
druid.processing.numThreads=1
druid.processing.buffer.sizeBytes=10000000
#emitting, opaque marker
druid.service=example
druid.request.logging.dir=/tmp/example/log
druid.realtime.specFile=realtime.spec
com.metamx.emitter.logging=true
com.metamx.emitter.logging.level=debug
# below are dummy values when operating a realtime only node
druid.processing.numThreads=3
com.metamx.aws.accessKey=dummy_access_key
com.metamx.aws.secretKey=dummy_secret_key
druid.pusher.s3.bucket=dummy_s3_bucket
druid.zk.service.host=localhost
druid.server.maxSize=300000000000
druid.zk.paths.base=/druid
druid.database.segmentTable=prod_segments
druid.database.user=druid
druid.database.password=diurd
druid.database.connectURI=jdbc:mysql://localhost:3306/druid
druid.zk.paths.discoveryPath=/druid/discoveryPath
druid.database.ruleTable=rules
druid.database.configTable=config
# Path on local FS for storage of segments; dir will be created if needed
druid.paths.indexCache=/tmp/druid/indexCache
# Path on local FS for storage of segment metadata; dir will be created if needed
druid.paths.segmentInfoCache=/tmp/druid/segmentInfoCache
# Setup local storage mode
druid.pusher.local.storageDirectory=/tmp/druid/localStorage
druid.pusher.local=true
- Launch the compute node:
java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \
-classpath lib/*:config/compute \
com.metamx.druid.http.ComputeMain
Create a File of Records
We can use the same records we have been, in a file called records.json:
{"utcdt": "2010-01-01T01:01:01", "wp": 1000, "gender": "male", "age": 100}
{"utcdt": "2010-01-01T01:01:02", "wp": 2000, "gender": "female", "age": 50}
{"utcdt": "2010-01-01T01:01:03", "wp": 3000, "gender": "male", "age": 20}
{"utcdt": "2010-01-01T01:01:04", "wp": 4000, "gender": "female", "age": 30}
{"utcdt": "2010-01-01T01:01:05", "wp": 5000, "gender": "male", "age": 40}
Run the Hadoop Job
Now its time to run the Hadoop Batch-ingestion job, HadoopDruidIndexer, which will fill a historical Compute node with data. First we'll need to configure the job.
- Create a config called batchConfig.json similar to:
{
"dataSource": "druidtest",
"timestampColumn": "utcdt",
"timestampFormat": "iso",
"dataSpec": {
"format": "json",
"dimensions": ["gender", "age"]
},
"granularitySpec": {
"type":"uniform",
"intervals":["2010-01-01T01/PT1H"],
"gran":"hour"
},
"pathSpec": { "type": "static",
"paths": "/Users/rjurney/Software/druid/records.json" },
"rollupSpec": { "aggs":[ {"type":"count", "name":"impressions"},
{"type":"doubleSum","name":"wp","fieldName":"wp"}
],
"rollupGranularity": "minute"},
"workingPath": "/tmp/working_path",
"segmentOutputPath": "/tmp/segments",
"leaveIntermediate": "false",
"partitionsSpec": {
"targetPartitionSize": 5000000
},
"updaterJobSpec": {
"type":"db",
"connectURI":"jdbc:mysql://localhost:3306/druid",
"user":"druid",
"password":"diurd",
"segmentTable":"prod_segments"
}
}
- Now run the job, with the config pointing at batchConfig.json:
java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 -Ddruid.realtime.specFile=realtime.spec -classpath lib/* com.metamx.druid.indexer.HadoopDruidIndexerMain batchConfig.json
You can now move on to Querying Your Data!