druid/docs/content/querying/aggregations.md

6.1 KiB
Raw Blame History

layout
doc_page

Aggregations

Aggregations can be provided at ingestion time as part of the ingestion spec as a way of summarizing data before it enters Druid. Aggregations can also be specified as part of many queries at query time.

Available aggregations are:

Count aggregator

count computes the count of Druid rows that match the filters.

{ "type" : "count", "name" : <output_name> }

Please note the count aggregator counts the number of Druid rows, which does not always reflect the number of raw events ingested. This is because Druid rolls up data at ingestion time. To count the number of ingested rows of data, include a count aggregator at ingestion time, and a longSum aggregator at query time.

Sum aggregators

longSum aggregator

computes the sum of values as a 64-bit, signed integer

{ "type" : "longSum", "name" : <output_name>, "fieldName" : <metric_name> }

name output name for the summed value fieldName name of the metric column to sum over

doubleSum aggregator

Computes the sum of values as 64-bit floating point value. Similar to longSum

{ "type" : "doubleSum", "name" : <output_name>, "fieldName" : <metric_name> }

Min / Max aggregators

doubleMin aggregator

doubleMin computes the minimum of all metric values and Double.POSITIVE_INFINITY

{ "type" : "doubleMin", "name" : <output_name>, "fieldName" : <metric_name> }

doubleMax aggregator

doubleMax computes the maximum of all metric values and Double.NEGATIVE_INFINITY

{ "type" : "doubleMax", "name" : <output_name>, "fieldName" : <metric_name> }

longMin aggregator

longMin computes the minimum of all metric values and Long.MAX_VALUE

{ "type" : "longMin", "name" : <output_name>, "fieldName" : <metric_name> }

longMax aggregator

longMax computes the maximum of all metric values and Long.MIN_VALUE

{ "type" : "longMax", "name" : <output_name>, "fieldName" : <metric_name> }

JavaScript aggregator

Computes an arbitrary JavaScript function over a set of columns (both metrics and dimensions).

All JavaScript functions must return numerical values.

{ "type": "javascript",
  "name": "<output_name>",
  "fieldNames"  : [ <column1>, <column2>, ... ],
  "fnAggregate" : "function(current, column1, column2, ...) {
                     <updates partial aggregate (current) based on the current row values>
                     return <updated partial aggregate>
                   }",
  "fnCombine"   : "function(partialA, partialB) { return <combined partial results>; }",
  "fnReset"     : "function()                   { return <initial value>; }"
}

Example

{
  "type": "javascript",
  "name": "sum(log(x)*y) + 10",
  "fieldNames": ["x", "y"],
  "fnAggregate" : "function(current, a, b)      { return current + (Math.log(a) * b); }",
  "fnCombine"   : "function(partialA, partialB) { return partialA + partialB; }",
  "fnReset"     : "function()                   { return 10; }"
}

The javascript aggregator is recommended for rapidly prototyping features. This aggregator will be much slower in production use than a native Java aggregator.

Cardinality aggregator

Computes the cardinality of a set of Druid dimensions, using HyperLogLog to estimate the cardinality.

{
  "type": "cardinality",
  "name": "<output_name>",
  "fieldNames": [ <dimension1>, <dimension2>, ... ],
  "byRow": <false | true> # (optional, defaults to false)
}

Cardinality by value

When setting byRow to false (the default) it computes the cardinality of the set composed of the union of all dimension values for all the given dimensions.

  • For a single dimension, this is equivalent to
SELECT COUNT(DISTINCT(dimension)) FROM <datasource>
  • For multiple dimensions, this is equivalent to something akin to
SELECT COUNT(DISTINCT(value)) FROM (
  SELECT dim_1 as value FROM <datasource>
  UNION
  SELECT dim_2 as value FROM <datasource>
  UNION
  SELECT dim_3 as value FROM <datasource>
)

Cardinality by row

When setting byRow to true it computes the cardinality by row, i.e. the cardinality of distinct dimension combinations. This is equivalent to something akin to

SELECT COUNT(*) FROM ( SELECT DIM1, DIM2, DIM3 FROM <datasource> GROUP BY DIM1, DIM2, DIM3 )

Example

Determine the number of distinct countries people are living in or have come from.

{
  "type": "cardinality",
  "name": "distinct_countries",
  "fieldNames": [ "coutry_of_origin", "country_of_residence" ]
}

Determine the number of distinct people (i.e. combinations of first and last name).

{
  "type": "cardinality",
  "name": "distinct_people",
  "fieldNames": [ "first_name", "last_name" ],
  "byRow" : true
}

Complex Aggregations

Druid supports complex aggregations such as various types of approximate sketches.

HyperUnique aggregator

Uses HyperLogLog to compute the estimated cardinality of a dimension that has been aggregated as a "hyperUnique" metric at indexing time.

{ "type" : "hyperUnique", "name" : <output_name>, "fieldName" : <metric_name> }

Miscellaneous Aggregations

Filtered Aggregator

A filtered aggregator wraps any given aggregator, but only aggregates the values for which the given dimension filter matches.

This makes it possible to compute the results of a filtered and an unfiltered aggregation simultaneously, without having to issue multiple queries, and use both results as part of post-aggregations.

Limitations: The filtered aggregator currently only supports 'or', 'and', 'selector', 'not' and 'Extraction' filters, i.e. matching one or multiple dimensions against a single value.

Note: If only the filtered results are required, consider putting the filter on the query itself, which will be much faster since it does not require scanning all the data.

{
  "type" : "filtered",
  "filter" : {
    "type" : "selector",
    "dimension" : <dimension>,
    "value" : <dimension value>
  }
  "aggregator" : <aggregation>
}