mirror of https://github.com/apache/druid.git
135 lines
3.9 KiB
Markdown
135 lines
3.9 KiB
Markdown
---
|
|
layout: default
|
|
---
|
|
These types of queries take a groupBy query object and return an array of JSON objects where each object represents a grouping asked for by the query.
|
|
|
|
An example groupBy query object is shown below:
|
|
|
|
<pre>
|
|
<code>
|
|
{
|
|
[queryType]() “groupBy”,
|
|
[dataSource]() “sample\_datasource”,
|
|
[granularity]() “day”,
|
|
[dimensions]() [“dim1”, “dim2”],
|
|
[limitSpec]() {
|
|
[type]() “default”,
|
|
[limit]() 5000,
|
|
[columns]() [“dim1”, “metric1”]
|
|
},
|
|
[filter]() {
|
|
[type]() “and”,
|
|
[fields]() [
|
|
{
|
|
[type]() “selector”,
|
|
[dimension]() “sample\_dimension1”,
|
|
[value]() “sample\_value1”
|
|
},
|
|
{
|
|
[type]() “or”,
|
|
[fields]() [
|
|
{
|
|
[type]() “selector”,
|
|
[dimension]() “sample\_dimension2”,
|
|
[value]() “sample\_value2”
|
|
},
|
|
{
|
|
[type]() “selector”,
|
|
[dimension]() “sample\_dimension3”,
|
|
[value]() “sample\_value3”
|
|
}
|
|
]
|
|
}
|
|
]
|
|
},
|
|
[aggregations]() [
|
|
{
|
|
[type]() “longSum”,
|
|
[name]() “sample\_name1”,
|
|
[fieldName]() “sample\_fieldName1”
|
|
},
|
|
{
|
|
[type]() “doubleSum”,
|
|
[name]() “sample\_name2”,
|
|
[fieldName]() “sample\_fieldName2”
|
|
}
|
|
],
|
|
[postAggregations]() [
|
|
{
|
|
[type]() “arithmetic”,
|
|
[name]() “sample\_divide”,
|
|
[fn]() “/”,
|
|
[fields]() [
|
|
{
|
|
[type]() “fieldAccess”,
|
|
[name]() “sample\_name1”,
|
|
[fieldName]() “sample\_fieldName1”
|
|
},
|
|
{
|
|
[type]() “fieldAccess”,
|
|
[name]() “sample\_name2”,
|
|
[fieldName]() “sample\_fieldName2”
|
|
}
|
|
]
|
|
}
|
|
],
|
|
[intervals]() [
|
|
“2012-01-01T00:00:00.000/2012-01-03T00:00:00.000”
|
|
],
|
|
[having]() {
|
|
[type]() “greaterThan”,
|
|
[aggregation]() “sample\_name1”,
|
|
[value]() 0
|
|
}
|
|
}
|
|
|
|
</pre>
|
|
</code>
|
|
|
|
There are 9 main parts to a groupBy query:
|
|
|
|
|property|description|required?|
|
|
|--------|-----------|---------|
|
|
|queryType|This String should always be “groupBy”; this is the first thing Druid looks at to figure out how to interpret the query|yes|
|
|
|dataSource|A String defining the data source to query, very similar to a table in a relational database|yes|
|
|
|dimensions|A JSON list of dimensions to do the groupBy over|yes|
|
|
|orderBy|See [OrderBy](OrderBy.html).|no|
|
|
|having|See [Having](Having.html).|no|
|
|
|granularity|Defines the granularity of the query. See [Granularities](Granularities.html)|yes|
|
|
|filter|See [Filters](Filters.html)|no|
|
|
|aggregations|See [Aggregations](Aggregations.html)|yes|
|
|
|postAggregations|See [Post Aggregations](Post-Aggregations.html)|no|
|
|
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|
|
|context|An additional JSON Object which can be used to specify certain flags.|no|
|
|
|
|
To pull it all together, the above query would return *n\*m* data points, up to a maximum of 5000 points, where n is the cardinality of the “dim1” dimension, m is the cardinality of the “dim2” dimension, each day between 2012-01-01 and 2012-01-03, from the “sample\_datasource” table. Each data point contains the (long) sum of sample\_fieldName1 if the value of the data point is greater than 0, the (double) sum of sample\_fieldName2 and the (double) the result of sample\_fieldName1 divided by sample\_fieldName2 for the filter set for a particular grouping of “dim1” and “dim2”. The output looks like this:
|
|
|
|
<pre>
|
|
<code>
|
|
[ {
|
|
“version” : “v1”,
|
|
“timestamp” : “2012-01-01T00:00:00.000Z”,
|
|
“event” : {
|
|
“dim1” : <some_dim1_value>,
|
|
“dim2” : <some_dim2_value>,
|
|
“sample\_name1” : <some_sample_name1_value>,
|
|
“sample\_name2” :<some_sample_name2_value>,
|
|
“sample\_divide” : <some_sample_divide_value>
|
|
}
|
|
}, {
|
|
“version” : “v1”,
|
|
“timestamp” : “2012-01-01T00:00:00.000Z”,
|
|
“event” : {
|
|
“dim1” : <some_other_dim1_value>,
|
|
“dim2” : <some_other_dim2_value>,
|
|
“sample\_name1” : <some_other_sample_name1_value>,
|
|
“sample\_name2” :<some_other_sample_name2_value>,
|
|
“sample\_divide” : <some_other_sample_divide_value>
|
|
}
|
|
},
|
|
…
|
|
]
|
|
|
|
</pre>
|
|
</code>
|