Ingestion Spec
A Druid ingestion spec consists of 3 components:
{
"dataSchema" : {...}
"ioConfig" : {...}
"tuningConfig" : {...}
}
Field |
Type |
Description |
Required |
dataSchema |
JSON Object |
Specifies the the schema of the incoming data. All ingestion specs can share the same dataSchema. |
yes |
ioConfig |
JSON Object |
Specifies where the data is coming from and where the data is going. This object will vary with the ingestion method. |
yes |
tuningConfig |
JSON Object |
Specifies how to tune various ingestion parameters. This object will vary with the ingestion method. |
no |
DataSchema
An example dataSchema is shown below:
"dataSchema" : {
"dataSource" : "wikipedia",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"column" : "timestamp",
"format" : "auto"
},
"dimensionsSpec" : {
"dimensions": ["page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","country","region","city"],
"dimensionExclusions" : [],
"spatialDimensions" : []
}
}
},
"metricsSpec" : [{
"type" : "count",
"name" : "count"
}, {
"type" : "doubleSum",
"name" : "added",
"fieldName" : "added"
}, {
"type" : "doubleSum",
"name" : "deleted",
"fieldName" : "deleted"
}, {
"type" : "doubleSum",
"name" : "delta",
"fieldName" : "delta"
}],
"granularitySpec" : {
"segmentGranularity" : "DAY",
"queryGranularity" : "NONE",
"intervals" : [ "2013-08-31/2013-09-01" ]
}
}
Field |
Type |
Description |
Required |
dataSource |
String |
The name of the ingested datasource. Datasources can be thought of as tables. |
yes |
parser |
JSON Object |
Specifies how ingested data can be parsed. |
yes |
metricsSpec |
JSON Object array |
A list of aggregators. |
yes |
granularitySpec |
JSON Object |
Specifies how to create segments and roll up data. |
yes |
Parser
If type
is not included, the parser defaults to string
.
String Parser
Field |
Type |
Description |
Required |
type |
String |
This should say string . |
no |
parseSpec |
JSON Object |
Specifies the format of the data. |
yes |
Protobuf Parser
Field |
Type |
Description |
Required |
type |
String |
This should say protobuf . |
no |
parseSpec |
JSON Object |
Specifies the format of the data. |
yes |
Avro Stream Parser
This is for realtime ingestion.
Field |
Type |
Description |
Required |
type |
String |
This should say avro_stream . |
no |
avroBytesDecoder |
JSON Object |
Specifies how to decode bytes to Avro record. |
yes |
parseSpec |
JSON Object |
Specifies the format of the data. |
yes |
For example, using Avro stream parser with schema repo Avro bytes decoder:
"parser" : {
"type" : "avro_stream",
"avroBytesDecoder" : {
"type" : "schema_repo",
"subjectAndIdConverter" : {
"type" : "avro_1124",
"topic" : "${YOUR_TOPIC}"
},
"schemaRepository" : {
"type" : "avro_1124_rest_client",
"url" : "${YOUR_SCHEMA_REPO_END_POINT}",
}
},
"parsSpec" : {
"format" : "timeAndDims",
"timestampSpec" : {},
"dimensionsSpec" : {}
}
}
Avro Bytes Decoder
If type
is not included, the avroBytesDecoder defaults to schema_repo
.
SchemaRepo Based Avro Bytes Decoder
This Avro bytes decoder first extract subject
and id
from input message bytes, then use them to lookup the Avro schema with which to decode Avro record from bytes. Details can be found in schema repo and AVRO-1124. You will need an http service like schema repo to hold the avro schema. Towards schema registration on the message producer side, you can refer to io.druid.data.input.AvroStreamInputRowParserTest#testParse()
.
Field |
Type |
Description |
Required |
type |
String |
This should say schema_repo . |
no |
subjectAndIdConverter |
JSON Object |
Specifies the how to extract subject and id from message bytes. |
yes |
schemaRepository |
JSON Object |
Specifies the how to lookup Avro schema from subject and id. |
yes |
Avro-1124 Subject And Id Converter
Field |
Type |
Description |
Required |
type |
String |
This should say avro_1124 . |
no |
topic |
String |
Specifies the topic of your kafka stream. |
yes |
Avro-1124 Schema Repository
Field |
Type |
Description |
Required |
type |
String |
This should say avro_1124_rest_client . |
no |
url |
String |
Specifies the endpoint url of your Avro-1124 schema repository. |
yes |
Avro Hadoop Parser
This is for batch ingestion using the HadoopDruidIndexer. The inputFormat
of inputSpec
in ioConfig
must be set to "io.druid.data.input.avro.AvroValueInputFormat"
. You may want to set Avro reader's schema in jobProperties
in tuningConfig
, eg: "avro.schema.path.input.value": "/path/to/your/schema.avsc"
or "avro.schema.input.value": "your_schema_JSON_object"
, if reader's schema is not set, the schema in Avro object container file will be used, see Avro specification.
Field |
Type |
Description |
Required |
type |
String |
This should say avro_hadoop . |
no |
parseSpec |
JSON Object |
Specifies the format of the data. |
yes |
fromPigAvroStorage |
Boolean |
Specifies whether the data file is stored using AvroStorage. |
no(default == false) |
For example, using Avro Hadoop parser with custom reader's schema file:
{
"type" : "index_hadoop",
"hadoopDependencyCoordinates" : ["io.druid.extensions:druid-avro-extensions"],
"spec" : {
"dataSchema" : {
"dataSource" : "",
"parser" : {
"type" : "avro_hadoop",
"parsSpec" : {
"format" : "timeAndDims",
"timestampSpec" : {},
"dimensionsSpec" : {}
}
}
},
"ioConfig" : {
"type" : "hadoop",
"inputSpec" : {
"type" : "static",
"inputFormat": "io.druid.data.input.avro.AvroValueInputFormat",
"paths" : ""
}
},
"tuningConfig" : {
"jobProperties" : {
"avro.schema.path.input.value" : "/path/to/my/schema.avsc",
}
}
}
}
ParseSpec
If format
is not included, the parseSpec defaults to tsv
.
JSON ParseSpec
Field |
Type |
Description |
Required |
format |
String |
This should say json . |
no |
timestampSpec |
JSON Object |
Specifies the column and format of the timestamp. |
yes |
dimensionsSpec |
JSON Object |
Specifies the dimensions of the data. |
yes |
flattenSpec |
JSON Object |
Specifies flattening configuration for nested JSON data. See Flattening JSON for more info. |
no |
JSON Lowercase ParseSpec
This is a special variation of the JSON ParseSpec that lower cases all the column names in the incoming JSON data. This parseSpec is required if you are updating to Druid 0.7.x from Druid 0.6.x, are directly ingesting JSON with mixed case column names, do not have any ETL in place to lower case those column names, and would like to make queries that include the data you created using 0.6.x and 0.7.x.
Field |
Type |
Description |
Required |
format |
String |
This should say jsonLowercase . |
yes |
timestampSpec |
JSON Object |
Specifies the column and format of the timestamp. |
yes |
dimensionsSpec |
JSON Object |
Specifies the dimensions of the data. |
yes |
CSV ParseSpec
Field |
Type |
Description |
Required |
format |
String |
This should say csv . |
yes |
timestampSpec |
JSON Object |
Specifies the column and format of the timestamp. |
yes |
dimensionsSpec |
JSON Object |
Specifies the dimensions of the data. |
yes |
listDelimiter |
String |
A custom delimiter for multi-value dimensions. |
no (default == ctrl+A) |
columns |
JSON array |
Specifies the columns of the data. |
yes |
TSV ParseSpec
Field |
Type |
Description |
Required |
format |
String |
This should say tsv . |
yes |
timestampSpec |
JSON Object |
Specifies the column and format of the timestamp. |
yes |
dimensionsSpec |
JSON Object |
Specifies the dimensions of the data. |
yes |
delimiter |
String |
A custom delimiter for data values. |
no (default == \t) |
listDelimiter |
String |
A custom delimiter for multi-value dimensions. |
no (default == ctrl+A) |
columns |
JSON String array |
Specifies the columns of the data. |
yes |
Timestamp Spec
Field |
Type |
Description |
Required |
column |
String |
The column of the timestamp. |
yes |
format |
String |
iso, millis, posix, auto or any Joda time format. |
no (default == 'auto' |
DimensionsSpec
Field |
Type |
Description |
Required |
dimensions |
JSON String array |
The names of the dimensions. If this is an empty array, Druid will treat all columns that are not timestamp or metric columns as dimension columns. |
yes |
dimensionExclusions |
JSON String array |
The names of dimensions to exclude from ingestion. |
no (default == [] |
spatialDimensions |
JSON Object array |
An array of spatial dimensions |
no (default == [] |
GranularitySpec
The default granularity spec is uniform
.
Uniform Granularity Spec
This spec is used to generated segments with uniform intervals.
Field |
Type |
Description |
Required |
type |
string |
The type of granularity spec. |
no (default == 'uniform') |
segmentGranularity |
string |
The granularity to create segments at. |
no (default == 'DAY') |
queryGranularity |
string |
The minimum granularity to be able to query results at and the granularity of the data inside the segment. E.g. a value of "minute" will mean that data is aggregated at minutely granularity. That is, if there are collisions in the tuple (minute(timestamp), dimensions), then it will aggregate values together using the aggregators instead of storing individual rows. |
no (default == 'NONE') |
intervals |
string |
A list of intervals for the raw data being ingested. Ignored for real-time ingestion. |
yes for batch, no for real-time |
Arbitrary Granularity Spec
This spec is used to generate segments with arbitrary intervals (it tries to create evenly sized segments). This spec is not supported for real-time processing.
Field |
Type |
Description |
Required |
type |
string |
The type of granularity spec. |
no (default == 'uniform') |
queryGranularity |
string |
The minimum granularity to be able to query results at and the granularity of the data inside the segment. E.g. a value of "minute" will mean that data is aggregated at minutely granularity. That is, if there are collisions in the tuple (minute(timestamp), dimensions), then it will aggregate values together using the aggregators instead of storing individual rows. |
no (default == 'NONE') |
intervals |
string |
A list of intervals for the raw data being ingested. Ignored for real-time ingestion. |
yes for batch, no for real-time |
IO Config
Real-time Ingestion: See Real-time ingestion.
Batch Ingestion: See Batch ingestion
Ingestion Spec
Real-time Ingestion: See Real-time ingestion.
Batch Ingestion: See Batch ingestion
Evaluating Timestamp, Dimensions and Metrics
Druid will interpret dimensions, dimension exclusions, and metrics in the following order:
- Any column listed in the list of dimensions is treated as a dimension.
- Any column listed in the list of dimension exclusions is excluded as a dimension.
- The timestamp column and columns/fieldNames required by metrics are excluded by default.
- If a metric is also listed as a dimension, the metric must have a different name than the dimension name.