mirror of https://github.com/apache/druid.git
2.4 KiB
2.4 KiB
layout |
---|
doc_page |
Aggregations
Aggregations are specifications of processing over metrics available in Druid. Available aggregations are:
Count aggregator
count
computes the row count that match the filters
{ "type" : "count", "name" : <output_name> }
Sum aggregators
longSum
aggregator
computes the sum of values as a 64-bit, signed integer
{ "type" : "longSum", "name" : <output_name>, "fieldName" : <metric_name> }
name
– output name for the summed value
fieldName
– name of the metric column to sum over
doubleSum
aggregator
Computes the sum of values as 64-bit floating point value. Similar to longSum
{ "type" : "doubleSum", "name" : <output_name>, "fieldName" : <metric_name> }
Min / Max aggregators
min
aggregator
min
computes the minimum metric value
{ "type" : "min", "name" : <output_name>, "fieldName" : <metric_name> }
max
aggregator
max
computes the maximum metric value
{ "type" : "max", "name" : <output_name>, "fieldName" : <metric_name> }
JavaScript aggregator
Computes an arbitrary JavaScript function over a set of columns (both metrics and dimensions).
All JavaScript functions must return numerical values.
{ "type": "javascript", "name": "<output_name>",
"fieldNames" : [ <column1>, <column2>, ... ],
"fnAggregate" : "function(current, column1, column2, ...) {
<updates partial aggregate (current) based on the current row values>
return <updated partial aggregate>
}",
"fnCombine" : "function(partialA, partialB) { return <combined partial results>; }",
"fnReset" : "function() { return <initial value>; }"
}
Example
{
"type": "javascript",
"name": "sum(log(x)/y) + 10",
"fieldNames": ["x", "y"],
"fnAggregate" : "function(current, a, b) { return current + (Math.log(a) * b); }",
"fnCombine" : "function(partialA, partialB) { return partialA + partialB; }",
"fnReset" : "function() { return 10; }"
}
Complex aggregators
hyperUnique
aggregator
hyperUnique
uses Hyperloglog to compute the estimated cardinality of a dimension.
{ "type" : "hyperUnique", "name" : <output_name>, "fieldName" : <metric_name> }