discourse-ai/spec/lib/completions/endpoints/open_ai_spec.rb

211 lines
5.8 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
require_relative "endpoint_compliance"
class OpenAiMock < EndpointMock
def response(content, tool_call: false)
message_content =
if tool_call
{ tool_calls: [content] }
else
{ content: content }
end
{
id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "gpt-3.5-turbo-0301",
usage: {
prompt_tokens: 337,
completion_tokens: 162,
total_tokens: 499,
},
choices: [
{ message: { role: "assistant" }.merge(message_content), finish_reason: "stop", index: 0 },
],
}
end
def stub_response(prompt, response_text, tool_call: false)
WebMock
.stub_request(:post, "https://api.openai.com/v1/chat/completions")
.with(body: request_body(prompt, tool_call: tool_call))
.to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call)))
end
def stream_line(delta, finish_reason: nil, tool_call: false)
message_content =
if tool_call
{ tool_calls: [delta] }
else
{ content: delta }
end
+"data: " << {
id: "chatcmpl-#{SecureRandom.hex}",
object: "chat.completion.chunk",
created: 1_681_283_881,
model: "gpt-3.5-turbo-0301",
choices: [{ delta: message_content }],
finish_reason: finish_reason,
index: 0,
}.to_json
end
def stub_streamed_response(prompt, deltas, tool_call: false)
chunks =
deltas.each_with_index.map do |_, index|
if index == (deltas.length - 1)
stream_line(deltas[index], finish_reason: "stop_sequence", tool_call: tool_call)
else
stream_line(deltas[index], tool_call: tool_call)
end
end
chunks = (chunks.join("\n\n") << "data: [DONE]").split("")
WebMock
.stub_request(:post, "https://api.openai.com/v1/chat/completions")
.with(body: request_body(prompt, stream: true, tool_call: tool_call))
.to_return(status: 200, body: chunks)
end
def tool_deltas
[
{ id: tool_id, function: {} },
{ id: tool_id, function: { name: "get_weather", arguments: "" } },
{ id: tool_id, function: { name: "get_weather", arguments: "" } },
{ id: tool_id, function: { name: "get_weather", arguments: "{" } },
{ id: tool_id, function: { name: "get_weather", arguments: " \"location\": \"Sydney\"" } },
{ id: tool_id, function: { name: "get_weather", arguments: " ,\"unit\": \"c\" }" } },
]
end
def tool_response
{
id: tool_id,
function: {
name: "get_weather",
arguments: { location: "Sydney", unit: "c" }.to_json,
},
}
end
def tool_id
"eujbuebfe"
end
def tool_payload
{
type: "function",
function: {
name: "get_weather",
description: "Get the weather in a city",
parameters: {
type: "object",
properties: {
location: {
type: "string",
description: "the city name",
},
unit: {
type: "string",
description: "the unit of measurement celcius c or fahrenheit f",
enum: %w[c f],
},
},
required: %w[location unit],
},
},
}
end
def request_body(prompt, stream: false, tool_call: false)
model
.default_options
.merge(messages: prompt)
.tap do |b|
b[:stream] = true if stream
b[:tools] = [tool_payload] if tool_call
end
.to_json
end
end
RSpec.describe DiscourseAi::Completions::Endpoints::OpenAi do
subject(:endpoint) do
described_class.new("gpt-3.5-turbo", DiscourseAi::Tokenizer::OpenAiTokenizer)
end
fab!(:user) { Fabricate(:user) }
let(:open_ai_mock) { OpenAiMock.new(endpoint) }
let(:compliance) do
EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::ChatGpt, user)
end
describe "#perform_completion!" do
context "when using regular mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.regular_mode_simple_prompt(open_ai_mock)
end
end
context "with tools" do
it "returns a function invocation" do
compliance.regular_mode_tools(open_ai_mock)
end
end
end
describe "when using streaming mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.streaming_mode_simple_prompt(open_ai_mock)
end
it "will automatically recover from a bad payload" do
# this should not happen, but lets ensure nothing bad happens
# the row with test1 is invalid json
raw_data = <<~TEXT.strip
d|a|t|a|:| |{|"choices":[{"delta":{"content":"test,"}}]}
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":{"content":"test1,"}}]
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":|{"content":"test2,"}}]}
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":{"content":"test3,"}}]|}
2024-01-19 06:51:26 -05:00
data: {"choices":[{|"|d|elta":{"content":"test4"}}]|}
2024-01-19 06:51:26 -05:00
data: [D|ONE]
TEXT
chunks = raw_data.split("|")
open_ai_mock.with_chunk_array_support do
open_ai_mock.stub_streamed_response(compliance.dialect.translate, chunks) do
partials = []
endpoint.perform_completion!(compliance.dialect, user) do |partial|
partials << partial
end
expect(partials.join).to eq("test,test1,test2,test3,test4")
end
end
end
end
context "with tools" do
2024-01-19 06:51:26 -05:00
it "returns a function invocation" do
compliance.streaming_mode_tools(open_ai_mock)
end
end
end
end
end