discourse-ai/spec/lib/completions/endpoints/open_ai_spec.rb

723 lines
28 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
require_relative "endpoint_compliance"
class OpenAiMock < EndpointMock
def response(content, tool_call: false)
message_content =
if tool_call
{ tool_calls: [content] }
else
{ content: content }
end
{
id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "gpt-3.5-turbo-0301",
usage: {
prompt_tokens: 8,
completion_tokens: 13,
total_tokens: 499,
},
choices: [
{ message: { role: "assistant" }.merge(message_content), finish_reason: "stop", index: 0 },
],
}
end
def stub_response(prompt, response_text, tool_call: false)
WebMock
.stub_request(:post, "https://api.openai.com/v1/chat/completions")
.with(body: request_body(prompt, tool_call: tool_call))
.to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call)))
end
def stream_line(delta, finish_reason: nil, tool_call: false)
message_content =
if tool_call
{ tool_calls: [delta] }
else
{ content: delta }
end
+"data: " << {
id: "chatcmpl-#{SecureRandom.hex}",
object: "chat.completion.chunk",
created: 1_681_283_881,
model: "gpt-3.5-turbo-0301",
choices: [{ delta: message_content }],
finish_reason: finish_reason,
index: 0,
}.to_json
end
FEATURE: AI artifacts (#898) This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes: 1. AI Artifacts System: - Adds a new `AiArtifact` model and database migration - Allows creation of web artifacts with HTML, CSS, and JavaScript content - Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution - Implements artifact rendering in iframes with sandbox protection - New `CreateArtifact` tool for AI to generate interactive content 2. Tool System Improvements: - Adds support for partial tool calls, allowing incremental updates during generation - Better handling of tool call states and progress tracking - Improved XML tool processing with CDATA support - Fixes for tool parameter handling and duplicate invocations 3. LLM Provider Updates: - Updates for Anthropic Claude models with correct token limits - Adds support for native/XML tool modes in Gemini integration - Adds new model configurations including Llama 3.1 models - Improvements to streaming response handling 4. UI Enhancements: - New artifact viewer component with expand/collapse functionality - Security controls for artifact execution (click-to-run in strict mode) - Improved dialog and response handling - Better error management for tool execution 5. Security Improvements: - Sandbox controls for artifact execution - Public/private artifact sharing controls - Security settings to control artifact behavior - CSP and frame-options handling for artifacts 6. Technical Improvements: - Better post streaming implementation - Improved error handling in completions - Better memory management for partial tool calls - Enhanced testing coverage 7. Configuration: - New site settings for artifact security - Extended LLM model configurations - Additional tool configuration options This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
2024-11-18 17:22:39 -05:00
def stub_raw(chunks, body_blk: nil)
stub = WebMock.stub_request(:post, "https://api.openai.com/v1/chat/completions")
stub.with(body: body_blk) if body_blk
stub.to_return(status: 200, body: chunks)
end
def stub_streamed_response(prompt, deltas, tool_call: false)
chunks =
deltas.each_with_index.map do |_, index|
if index == (deltas.length - 1)
stream_line(deltas[index], finish_reason: "stop_sequence", tool_call: tool_call)
else
stream_line(deltas[index], tool_call: tool_call)
end
end
chunks = (chunks.join("\n\n") << "data: [DONE]").split("")
WebMock
.stub_request(:post, "https://api.openai.com/v1/chat/completions")
.with(body: request_body(prompt, stream: true, tool_call: tool_call))
.to_return(status: 200, body: chunks)
yield if block_given?
end
def tool_deltas
[
{ id: tool_id, function: {} },
{ id: tool_id, function: { name: "get_weather", arguments: "" } },
{ id: tool_id, function: { arguments: "" } },
{ id: tool_id, function: { arguments: "{" } },
{ id: tool_id, function: { arguments: " \"location\": \"Sydney\"" } },
{ id: tool_id, function: { arguments: " ,\"unit\": \"c\" }" } },
]
end
def tool_response
{
id: tool_id,
function: {
name: "get_weather",
arguments: { location: "Sydney", unit: "c" }.to_json,
},
}
end
def tool_id
"tool_0"
end
def tool_payload
{
type: "function",
function: {
name: "get_weather",
description: "Get the weather in a city",
parameters: {
type: "object",
properties: {
location: {
type: "string",
description: "the city name",
},
unit: {
type: "string",
description: "the unit of measurement celcius c or fahrenheit f",
enum: %w[c f],
},
},
required: %w[location unit],
},
},
}
end
def request_body(prompt, stream: false, tool_call: false)
model
.default_options
.merge(messages: prompt)
.tap do |b|
if stream
b[:stream] = true
b[:stream_options] = { include_usage: true }
end
b[:tools] = [tool_payload] if tool_call
end
.to_json
end
end
RSpec.describe DiscourseAi::Completions::Endpoints::OpenAi do
subject(:endpoint) { described_class.new(model) }
fab!(:user)
fab!(:model) { Fabricate(:llm_model) }
let(:echo_tool) do
{
name: "echo",
description: "echo something",
parameters: [{ name: "text", type: "string", description: "text to echo", required: true }],
}
end
let(:tools) { [echo_tool] }
let(:open_ai_mock) { OpenAiMock.new(endpoint) }
let(:compliance) do
EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::ChatGpt, user)
end
let(:image100x100) { plugin_file_from_fixtures("100x100.jpg") }
let(:upload100x100) do
UploadCreator.new(image100x100, "image.jpg").create_for(Discourse.system_user.id)
end
describe "repeat calls" do
it "can properly reset context" do
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
tools = [
{
name: "echo",
description: "echo something",
parameters: [
{ name: "text", type: "string", description: "text to echo", required: true },
],
},
]
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a bot",
messages: [type: :user, id: "user1", content: "echo hello"],
tools: tools,
)
response = {
id: "chatcmpl-9JxkAzzaeO4DSV3omWvok9TKhCjBH",
object: "chat.completion",
created: 1_714_544_914,
model: "gpt-4-turbo-2024-04-09",
choices: [
{
index: 0,
message: {
role: "assistant",
content: nil,
tool_calls: [
{
id: "call_I8LKnoijVuhKOM85nnEQgWwd",
type: "function",
function: {
name: "echo",
arguments: "{\"text\":\"hello\"}",
},
},
],
},
logprobs: nil,
finish_reason: "tool_calls",
},
],
usage: {
prompt_tokens: 55,
completion_tokens: 13,
total_tokens: 68,
},
system_fingerprint: "fp_ea6eb70039",
}.to_json
stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return(body: response)
result = llm.generate(prompt, user: user)
tool_call =
DiscourseAi::Completions::ToolCall.new(
id: "call_I8LKnoijVuhKOM85nnEQgWwd",
name: "echo",
parameters: {
text: "hello",
},
)
expect(result).to eq(tool_call)
stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return(
body: { choices: [message: { content: "OK" }] }.to_json,
)
result = llm.generate(prompt, user: user)
expect(result).to eq("OK")
end
end
describe "forced tool use" do
it "can properly force tool use" do
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
tools = [
{
name: "echo",
description: "echo something",
parameters: [
{ name: "text", type: "string", description: "text to echo", required: true },
],
},
]
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a bot",
messages: [type: :user, id: "user1", content: "echo hello"],
tools: tools,
tool_choice: "echo",
)
response = {
id: "chatcmpl-9JxkAzzaeO4DSV3omWvok9TKhCjBH",
object: "chat.completion",
created: 1_714_544_914,
model: "gpt-4-turbo-2024-04-09",
choices: [
{
index: 0,
message: {
role: "assistant",
content: nil,
tool_calls: [
{
id: "call_I8LKnoijVuhKOM85nnEQgWwd",
type: "function",
function: {
name: "echo",
arguments: "{\"text\":\"h<e>llo\"}",
},
},
],
},
logprobs: nil,
finish_reason: "tool_calls",
},
],
usage: {
prompt_tokens: 55,
completion_tokens: 13,
total_tokens: 68,
},
system_fingerprint: "fp_ea6eb70039",
}.to_json
body_json = nil
stub_request(:post, "https://api.openai.com/v1/chat/completions").with(
body: proc { |body| body_json = JSON.parse(body, symbolize_names: true) },
).to_return(body: response)
result = llm.generate(prompt, user: user)
expect(body_json[:tool_choice]).to eq({ type: "function", function: { name: "echo" } })
log = AiApiAuditLog.order(:id).last
expect(log.request_tokens).to eq(55)
expect(log.response_tokens).to eq(13)
expected =
DiscourseAi::Completions::ToolCall.new(
id: "call_I8LKnoijVuhKOM85nnEQgWwd",
name: "echo",
parameters: {
text: "h<e>llo",
},
)
expect(result).to eq(expected)
stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return(
body: { choices: [message: { content: "OK" }] }.to_json,
)
result = llm.generate(prompt, user: user)
expect(result).to eq("OK")
end
end
describe "image support" do
it "can handle images" do
model = Fabricate(:llm_model, vision_enabled: true)
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
prompt =
DiscourseAi::Completions::Prompt.new(
"You are image bot",
messages: [type: :user, id: "user1", content: "hello", upload_ids: [upload100x100.id]],
)
encoded = prompt.encoded_uploads(prompt.messages.last)
parsed_body = nil
stub_request(:post, "https://api.openai.com/v1/chat/completions").with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
).to_return(status: 200, body: { choices: [message: { content: "nice pic" }] }.to_json)
completion = llm.generate(prompt, user: user)
expect(completion).to eq("nice pic")
expected_body = {
model: "gpt-4-turbo",
messages: [
{ role: "system", content: "You are image bot" },
{
role: "user",
content: [
{
type: "image_url",
image_url: {
url: "data:#{encoded[0][:mime_type]};base64,#{encoded[0][:base64]}",
},
},
{ type: "text", text: "hello" },
],
name: "user1",
},
],
}
expect(parsed_body).to eq(expected_body)
end
end
describe "#perform_completion!" do
FEATURE: AI artifacts (#898) This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes: 1. AI Artifacts System: - Adds a new `AiArtifact` model and database migration - Allows creation of web artifacts with HTML, CSS, and JavaScript content - Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution - Implements artifact rendering in iframes with sandbox protection - New `CreateArtifact` tool for AI to generate interactive content 2. Tool System Improvements: - Adds support for partial tool calls, allowing incremental updates during generation - Better handling of tool call states and progress tracking - Improved XML tool processing with CDATA support - Fixes for tool parameter handling and duplicate invocations 3. LLM Provider Updates: - Updates for Anthropic Claude models with correct token limits - Adds support for native/XML tool modes in Gemini integration - Adds new model configurations including Llama 3.1 models - Improvements to streaming response handling 4. UI Enhancements: - New artifact viewer component with expand/collapse functionality - Security controls for artifact execution (click-to-run in strict mode) - Improved dialog and response handling - Better error management for tool execution 5. Security Improvements: - Sandbox controls for artifact execution - Public/private artifact sharing controls - Security settings to control artifact behavior - CSP and frame-options handling for artifacts 6. Technical Improvements: - Better post streaming implementation - Improved error handling in completions - Better memory management for partial tool calls - Enhanced testing coverage 7. Configuration: - New site settings for artifact security - Extended LLM model configurations - Additional tool configuration options This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
2024-11-18 17:22:39 -05:00
context "when using XML tool calls format" do
let(:xml_tool_call_response) { <<~XML }
<function_calls>
<invoke>
<tool_name>get_weather</tool_name>
<parameters>
<location>Sydney</location>
<unit>c</unit>
</parameters>
</invoke>
</function_calls>
XML
it "parses XML tool calls" do
response = {
id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "gpt-3.5-turbo-0301",
usage: {
prompt_tokens: 8,
completion_tokens: 13,
total_tokens: 499,
},
choices: [
{
message: {
role: "assistant",
content: xml_tool_call_response,
},
finish_reason: "stop",
index: 0,
},
],
}.to_json
endpoint.llm_model.update!(provider_params: { disable_native_tools: true })
body = nil
open_ai_mock.stub_raw(response, body_blk: proc { |inner_body| body = inner_body })
dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools))
tool_call = endpoint.perform_completion!(dialect, user)
body_parsed = JSON.parse(body, symbolize_names: true)
expect(body_parsed[:tools]).to eq(nil)
expect(body_parsed[:messages][0][:content]).to include("<function_calls>")
expect(tool_call.name).to eq("get_weather")
expect(tool_call.parameters).to eq({ location: "Sydney", unit: "c" })
end
end
context "when using regular mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.regular_mode_simple_prompt(open_ai_mock)
end
end
context "with tools" do
it "returns a function invocation" do
compliance.regular_mode_tools(open_ai_mock)
end
end
end
describe "when using streaming mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.streaming_mode_simple_prompt(open_ai_mock)
end
it "will automatically recover from a bad payload" do
called = false
# this should not happen, but lets ensure nothing bad happens
# the row with test1 is invalid json
raw_data = <<~TEXT.strip
d|a|t|a|:| |{|"choices":[{"delta":{"content":"test,"}}]}
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":{"content":"test|1| |,"}}]
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":|{"content":"test2 ,"}}]}
2024-01-19 06:51:26 -05:00
data: {"choices":[{"delta":{"content":"test3,"}}]|}
2024-01-19 06:51:26 -05:00
data: {"choices":[{|"|d|elta":{"content":"test4"}}]|}
2024-01-19 06:51:26 -05:00
data: [D|ONE]
TEXT
chunks = raw_data.split("|")
open_ai_mock.with_chunk_array_support do
open_ai_mock.stub_raw(chunks)
partials = []
endpoint.perform_completion!(compliance.dialect, user) { |partial| partials << partial }
called = true
expect(partials.join).to eq("test,test2 ,test3,test4")
end
expect(called).to be(true)
end
end
context "with tools" do
2024-01-19 06:51:26 -05:00
it "returns a function invocation" do
compliance.streaming_mode_tools(open_ai_mock)
end
it "properly handles multiple tool calls" do
raw_data = <<~TEXT.strip
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"role":"assistant","content":null},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"id":"call_3Gyr3HylFJwfrtKrL6NaIit1","type":"function","function":{"name":"search","arguments":""}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\\"se"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"arch_"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"query\\""}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":": \\"D"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"iscou"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"rse AI"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":" bot"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"\\"}"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"id":"call_H7YkbgYurHpyJqzwUN4bghwN","type":"function","function":{"name":"search","arguments":""}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"{\\"qu"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"ery\\":"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":" \\"Disc"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"ours"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"e AI "}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"bot2\\"}"}}]},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]}
data: [DONE]
TEXT
open_ai_mock.stub_raw(raw_data)
response = []
dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools))
endpoint.perform_completion!(dialect, user) { |partial| response << partial }
tool_calls = [
DiscourseAi::Completions::ToolCall.new(
name: "search",
id: "call_3Gyr3HylFJwfrtKrL6NaIit1",
parameters: {
search_query: "Discourse AI bot",
},
),
DiscourseAi::Completions::ToolCall.new(
name: "search",
id: "call_H7YkbgYurHpyJqzwUN4bghwN",
parameters: {
query: "Discourse AI bot2",
},
),
]
expect(response).to eq(tool_calls)
end
it "properly handles newlines" do
response = <<~TEXT.strip
data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":":\\n\\n"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"```"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"ruby"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"\\n"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"def"},"logprobs":null,"finish_reason":null}],"usage":null}
TEXT
open_ai_mock.stub_raw(response)
partials = []
dialect = compliance.dialect(prompt: compliance.generic_prompt)
endpoint.perform_completion!(dialect, user) { |partial| partials << partial }
expect(partials).to eq([":\n\n", "```", "ruby", "\n", "def"])
end
it "uses proper token accounting" do
response = <<~TEXT.strip
data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}],"usage":null}|
data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}],"usage":null}|
data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}],"usage":null}|
data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[],"usage":{"prompt_tokens":20,"completion_tokens":9,"total_tokens":29}}|
data: [DONE]
TEXT
chunks = response.split("|")
open_ai_mock.with_chunk_array_support do
open_ai_mock.stub_raw(chunks)
partials = []
dialect = compliance.dialect(prompt: compliance.generic_prompt)
endpoint.perform_completion!(dialect, user) { |partial| partials << partial }
expect(partials).to eq(["Hello"])
log = AiApiAuditLog.order("id desc").first
expect(log.request_tokens).to eq(20)
expect(log.response_tokens).to eq(9)
end
end
FEATURE: AI artifacts (#898) This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes: 1. AI Artifacts System: - Adds a new `AiArtifact` model and database migration - Allows creation of web artifacts with HTML, CSS, and JavaScript content - Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution - Implements artifact rendering in iframes with sandbox protection - New `CreateArtifact` tool for AI to generate interactive content 2. Tool System Improvements: - Adds support for partial tool calls, allowing incremental updates during generation - Better handling of tool call states and progress tracking - Improved XML tool processing with CDATA support - Fixes for tool parameter handling and duplicate invocations 3. LLM Provider Updates: - Updates for Anthropic Claude models with correct token limits - Adds support for native/XML tool modes in Gemini integration - Adds new model configurations including Llama 3.1 models - Improvements to streaming response handling 4. UI Enhancements: - New artifact viewer component with expand/collapse functionality - Security controls for artifact execution (click-to-run in strict mode) - Improved dialog and response handling - Better error management for tool execution 5. Security Improvements: - Sandbox controls for artifact execution - Public/private artifact sharing controls - Security settings to control artifact behavior - CSP and frame-options handling for artifacts 6. Technical Improvements: - Better post streaming implementation - Improved error handling in completions - Better memory management for partial tool calls - Enhanced testing coverage 7. Configuration: - New site settings for artifact security - Extended LLM model configurations - Additional tool configuration options This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
2024-11-18 17:22:39 -05:00
it "properly handles multiple params in partial tool calls" do
# this is not working and it is driving me nuts so I will use a sledghammer
# text = plugin_file_from_fixtures("openai_artifact_call.txt", "bot")
path = File.join(__dir__, "../../../fixtures/bot", "openai_artifact_call.txt")
text = File.read(path)
partials = []
open_ai_mock.with_chunk_array_support do
open_ai_mock.stub_raw(text.scan(/.*\n/))
dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools))
endpoint.perform_completion!(dialect, user, partial_tool_calls: true) do |partial|
partials << partial.dup
end
end
expect(partials.compact.length).to eq(128)
params =
partials
.map { |p| p.parameters if p.is_a?(DiscourseAi::Completions::ToolCall) && p.partial? }
.compact
lengths = {}
params.each do |p|
p.each do |k, v|
if lengths[k] && lengths[k] > v.length
expect(lengths[k]).to be > v.length
else
lengths[k] = v.length
end
end
end
end
it "properly handles spaces in tools payload and partial tool calls" do
raw_data = <<~TEXT.strip
data: {"choices":[{"index":0,"delta":{"role":"assistant","content":null,"tool_calls":[{"index":0,"id":"func_id","type":"function","function":{"name":"go|ogle","arg|uments":""}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "{\\""}}]}}]}
data: {"ch|oices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "query"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "\\":\\""}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "Ad"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "a|b"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "as"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": |"| "}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "9"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "."}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"argume|nts": "1"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "\\"}"}}]}}]}
data: {"choices": [{"index": 0, "delta": {"tool_calls": []}}]}
data: [D|ONE]
TEXT
chunks = raw_data.split("|")
open_ai_mock.with_chunk_array_support do
open_ai_mock.stub_raw(chunks)
partials = []
dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools))
endpoint.perform_completion!(dialect, user, partial_tool_calls: true) do |partial|
partials << partial.dup
end
tool_call =
DiscourseAi::Completions::ToolCall.new(
id: "func_id",
name: "google",
parameters: {
query: "Adabas 9.1",
},
)
expect(partials.last).to eq(tool_call)
progress = partials.map { |p| p.parameters[:query] }
expect(progress).to eq(["Ad", "Adabas", "Adabas 9.", "Adabas 9.1"])
end
end
end
end
end
end