2024-06-16 12:07:35 -04:00
import os
import torch
import trimesh
from accelerate . utils import set_seed
from accelerate import Accelerator
import numpy as np
import gradio as gr
from main import get_args , load_model
from mesh_to_pc import process_mesh_to_pc
import time
import matplotlib . pyplot as plt
from mpl_toolkits . mplot3d . art3d import Poly3DCollection
from PIL import Image
import io
args = get_args ( )
model = load_model ( args )
device = torch . device ( ' cuda ' )
accelerator = Accelerator (
mixed_precision = " fp16 " ,
)
model = accelerator . prepare ( model )
model . eval ( )
print ( " Model loaded to device " )
def wireframe_render ( mesh ) :
views = [
( 90 , 20 ) , ( 270 , 20 )
]
mesh . vertices = mesh . vertices [ : , [ 0 , 2 , 1 ] ]
bounding_box = mesh . bounds
center = mesh . centroid
scale = np . ptp ( bounding_box , axis = 0 ) . max ( )
fig = plt . figure ( figsize = ( 10 , 10 ) )
# Function to render and return each view as an image
def render_view ( mesh , azimuth , elevation ) :
ax = fig . add_subplot ( 111 , projection = ' 3d ' )
ax . set_axis_off ( )
# Extract vertices and faces for plotting
vertices = mesh . vertices
faces = mesh . faces
# Plot faces
ax . add_collection3d ( Poly3DCollection (
vertices [ faces ] ,
facecolors = ( 0.8 , 0.5 , 0.2 , 1.0 ) , # Brownish yellow
edgecolors = ' k ' ,
linewidths = 0.5 ,
) )
# Set limits and center the view on the object
ax . set_xlim ( center [ 0 ] - scale / 2 , center [ 0 ] + scale / 2 )
ax . set_ylim ( center [ 1 ] - scale / 2 , center [ 1 ] + scale / 2 )
ax . set_zlim ( center [ 2 ] - scale / 2 , center [ 2 ] + scale / 2 )
# Set view angle
ax . view_init ( elev = elevation , azim = azimuth )
# Save the figure to a buffer
buf = io . BytesIO ( )
plt . savefig ( buf , format = ' png ' , bbox_inches = ' tight ' , pad_inches = 0 , dpi = 300 )
plt . clf ( )
buf . seek ( 0 )
return Image . open ( buf )
# Render each view and store in a list
images = [ render_view ( mesh , az , el ) for az , el in views ]
# Combine images horizontally
widths , heights = zip ( * ( i . size for i in images ) )
total_width = sum ( widths )
max_height = max ( heights )
combined_image = Image . new ( ' RGBA ' , ( total_width , max_height ) )
x_offset = 0
for img in images :
combined_image . paste ( img , ( x_offset , 0 ) )
x_offset + = img . width
# Save the combined image
save_path = f " combined_mesh_view_ { int ( time . time ( ) ) } .png "
combined_image . save ( save_path )
plt . close ( fig )
return save_path
@torch.no_grad ( )
def do_inference ( input_3d , sample_seed = 0 , do_sampling = False , do_marching_cubes = False ) :
set_seed ( sample_seed )
print ( " Seed value: " , sample_seed )
input_mesh = trimesh . load ( input_3d )
pc_list , mesh_list = process_mesh_to_pc ( [ input_mesh ] , marching_cubes = do_marching_cubes )
mesh = mesh_list [ 0 ]
mesh . merge_vertices ( )
mesh . update_faces ( mesh . unique_faces ( ) )
mesh . fix_normals ( )
if mesh . visual . vertex_colors is not None :
orange_color = np . array ( [ 255 , 165 , 0 , 255 ] , dtype = np . uint8 )
mesh . visual . vertex_colors = np . tile ( orange_color , ( mesh . vertices . shape [ 0 ] , 1 ) )
else :
orange_color = np . array ( [ 255 , 165 , 0 , 255 ] , dtype = np . uint8 )
mesh . visual . vertex_colors = np . tile ( orange_color , ( mesh . vertices . shape [ 0 ] , 1 ) )
input_save_name = f " processed_input_ { int ( time . time ( ) ) } .obj "
mesh . export ( input_save_name )
input_render_res = wireframe_render ( mesh )
pc_normal = pc_list [ 0 ] # 4096, 6
pc_coor = pc_normal [ : , : 3 ]
normals = pc_normal [ : , 3 : ]
bounds = np . array ( [ pc_coor . min ( axis = 0 ) , pc_coor . max ( axis = 0 ) ] )
pc_coor = pc_coor - ( bounds [ 0 ] + bounds [ 1 ] ) [ None , : ] / 2
pc_coor = pc_coor / np . abs ( pc_coor ) . max ( ) * 0.9995
assert ( np . linalg . norm ( normals , axis = - 1 ) > 0.99 ) . all ( ) , " normals should be unit vectors, something wrong "
normalized_pc_normal = np . concatenate ( [ pc_coor , normals ] , axis = - 1 , dtype = np . float16 )
input = torch . tensor ( normalized_pc_normal , dtype = torch . float16 , device = device ) [ None ]
print ( " Data loaded " )
# with accelerator.autocast():
with accelerator . autocast ( ) :
outputs = model ( input , do_sampling )
print ( " Model inference done " )
recon_mesh = outputs [ 0 ]
recon_mesh = recon_mesh [ ~ torch . isnan ( recon_mesh [ : , 0 , 0 ] ) ] # nvalid_face x 3 x 3
vertices = recon_mesh . reshape ( - 1 , 3 ) . cpu ( )
vertices_index = np . arange ( len ( vertices ) ) # 0, 1, ..., 3 x face
triangles = vertices_index . reshape ( - 1 , 3 )
artist_mesh = trimesh . Trimesh ( vertices = vertices , faces = triangles , force = " mesh " ,
merge_primitives = True )
artist_mesh . merge_vertices ( )
artist_mesh . update_faces ( artist_mesh . unique_faces ( ) )
artist_mesh . fix_normals ( )
if artist_mesh . visual . vertex_colors is not None :
orange_color = np . array ( [ 255 , 165 , 0 , 255 ] , dtype = np . uint8 )
artist_mesh . visual . vertex_colors = np . tile ( orange_color , ( artist_mesh . vertices . shape [ 0 ] , 1 ) )
else :
orange_color = np . array ( [ 255 , 165 , 0 , 255 ] , dtype = np . uint8 )
artist_mesh . visual . vertex_colors = np . tile ( orange_color , ( artist_mesh . vertices . shape [ 0 ] , 1 ) )
num_faces = len ( artist_mesh . faces )
brown_color = np . array ( [ 165 , 42 , 42 , 255 ] , dtype = np . uint8 )
face_colors = np . tile ( brown_color , ( num_faces , 1 ) )
artist_mesh . visual . face_colors = face_colors
# add time stamp to avoid cache
save_name = f " output_ { int ( time . time ( ) ) } .obj "
artist_mesh . export ( save_name )
output_render = wireframe_render ( artist_mesh )
return input_save_name , input_render_res , save_name , output_render
_HEADER_ = '''
< h2 > < b > Official ? Gradio Demo < / b > < / h2 > < h2 > < a href = ' https://github.com/buaacyw/MeshAnything ' target = ' _blank ' > < b > MeshAnything : Artist - Created Mesh Generation with Autoregressive Transformers < / b > < / a > < / h2 >
* * MeshAnything * * converts any 3 D representation into meshes created by human artists , i . e . , Artist - Created Meshes ( AMs ) .
Code : < a href = ' https://github.com/buaacyw/MeshAnything ' target = ' _blank ' > GitHub < / a > . Arxiv Paper : < a href = ' https://buaacyw.github.io/mesh-anything/ ' target = ' _blank ' > ArXiv < / a > .
? ? ? ? ? ? * * Important Notes : * *
- Gradio doesn ' t support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
- The input mesh will be normalized to a unit bounding box . The up vector of the input mesh should be + Y for better results . Click * * Preprocess with Marching Cubes * * if the input mesh is a manually created mesh .
- Limited by computational resources , MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces . The shape of the input mesh should be sharp enough ; otherwise , it will be challenging to represent it with only 800 faces . Thus , feed - forward image - to - 3 D methods may often produce bad results due to insufficient shape quality .
- For point cloud input , please refer to our github repo < a href = ' https://github.com/buaacyw/MeshAnything ' target = ' _blank ' > GitHub < / a > .
'''
_CITE_ = r """
If MeshAnything is helpful , please help to ? the < a href = ' https://github.com/buaacyw/MeshAnything ' target = ' _blank ' > Github Repo < / a > . Thanks !
- - -
? * * License * *
S - Lab - 1.0 LICENSE . Please refer to the [ LICENSE file ] ( https : / / github . com / buaacyw / GaussianEditor / blob / master / LICENSE . txt ) for details .
? * * Contact * *
If you have any questions , feel free to open a discussion or contact us at < b > yiwen002 @e.ntu.edu.sg < / b > .
"""
output_model_obj = gr . Model3D (
2024-06-16 12:30:42 -04:00
label = " Generated Mesh (OBJ Format) " ,
2024-06-16 12:07:35 -04:00
clear_color = [ 1 , 1 , 1 , 1 ] ,
)
preprocess_model_obj = gr . Model3D (
2024-06-16 12:30:42 -04:00
label = " Processed Input Mesh (OBJ Format) " ,
2024-06-16 12:07:35 -04:00
clear_color = [ 1 , 1 , 1 , 1 ] ,
)
input_image_render = gr . Image (
label = " Wireframe Render of Processed Input Mesh " ,
)
output_image_render = gr . Image (
label = " Wireframe Render of Generated Mesh " ,
)
with ( gr . Blocks ( ) as demo ) :
gr . Markdown ( _HEADER_ )
with gr . Row ( variant = " panel " ) :
with gr . Column ( ) :
with gr . Row ( ) :
input_3d = gr . Model3D (
label = " Input Mesh " ,
clear_color = [ 1 , 1 , 1 , 1 ] ,
)
with gr . Row ( ) :
with gr . Group ( ) :
do_marching_cubes = gr . Checkbox ( label = " Preprocess with Marching Cubes " , value = False )
do_sampling = gr . Checkbox ( label = " Random Sampling " , value = False )
sample_seed = gr . Number ( value = 0 , label = " Seed Value " , precision = 0 )
with gr . Row ( ) :
submit = gr . Button ( " Generate " , elem_id = " generate " , variant = " primary " )
with gr . Row ( variant = " panel " ) :
mesh_examples = gr . Examples (
examples = [
os . path . join ( " examples " , img_name ) for img_name in sorted ( os . listdir ( " examples " ) )
] ,
inputs = input_3d ,
outputs = [ preprocess_model_obj , input_image_render , output_model_obj , output_image_render ] ,
fn = do_inference ,
cache_examples = False ,
examples_per_page = 10
)
with gr . Column ( ) :
with gr . Row ( ) :
input_image_render . render ( )
with gr . Row ( ) :
with gr . Tab ( " OBJ " ) :
preprocess_model_obj . render ( )
with gr . Row ( ) :
output_image_render . render ( )
with gr . Row ( ) :
with gr . Tab ( " OBJ " ) :
output_model_obj . render ( )
with gr . Row ( ) :
gr . Markdown ( ''' Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying ''' )
gr . Markdown ( _CITE_ )
mv_images = gr . State ( )
submit . click (
fn = do_inference ,
inputs = [ input_3d , sample_seed , do_sampling , do_marching_cubes ] ,
outputs = [ preprocess_model_obj , input_image_render , output_model_obj , output_image_render ] ,
)
demo . launch ( share = True )