2020-02-11 09:38:17 -05:00
|
|
|
[role="xpack"]
|
|
|
|
[testenv="basic"]
|
|
|
|
[[search-aggregations-metrics-boxplot-aggregation]]
|
2020-10-30 13:46:12 -04:00
|
|
|
=== Boxplot aggregation
|
|
|
|
++++
|
|
|
|
<titleabbrev>Boxplot</titleabbrev>
|
|
|
|
++++
|
2020-02-11 09:38:17 -05:00
|
|
|
|
|
|
|
A `boxplot` metrics aggregation that computes boxplot of numeric values extracted from the aggregated documents.
|
2020-02-13 18:09:26 -05:00
|
|
|
These values can be generated by a provided script or extracted from specific numeric or
|
|
|
|
<<histogram,histogram fields>> in the documents.
|
2020-02-11 09:38:17 -05:00
|
|
|
|
2020-08-17 11:27:04 -04:00
|
|
|
The `boxplot` aggregation returns essential information for making a {wikipedia}/Box_plot[box plot]: minimum, maximum
|
2020-02-11 09:38:17 -05:00
|
|
|
median, first quartile (25th percentile) and third quartile (75th percentile) values.
|
|
|
|
|
|
|
|
==== Syntax
|
|
|
|
|
|
|
|
A `boxplot` aggregation looks like this in isolation:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"boxplot": {
|
|
|
|
"field": "load_time"
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// NOTCONSOLE
|
|
|
|
|
|
|
|
Let's look at a boxplot representing load time:
|
|
|
|
|
|
|
|
[source,console]
|
|
|
|
--------------------------------------------------
|
|
|
|
GET latency/_search
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"size": 0,
|
|
|
|
"aggs": {
|
|
|
|
"load_time_boxplot": {
|
|
|
|
"boxplot": {
|
|
|
|
"field": "load_time" <1>
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:latency]
|
|
|
|
<1> The field `load_time` must be a numeric field
|
|
|
|
|
|
|
|
The response will look like this:
|
|
|
|
|
|
|
|
[source,console-result]
|
|
|
|
--------------------------------------------------
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
...
|
|
|
|
|
|
|
|
"aggregations": {
|
|
|
|
"load_time_boxplot": {
|
|
|
|
"min": 0.0,
|
|
|
|
"max": 990.0,
|
|
|
|
"q1": 165.0,
|
|
|
|
"q2": 445.0,
|
|
|
|
"q3": 725.0
|
|
|
|
}
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
|
|
|
|
|
|
|
|
==== Script
|
|
|
|
|
|
|
|
The boxplot metric supports scripting. For example, if our load times
|
|
|
|
are in milliseconds but we want values calculated in seconds, we could use
|
|
|
|
a script to convert them on-the-fly:
|
|
|
|
|
|
|
|
[source,console]
|
|
|
|
--------------------------------------------------
|
|
|
|
GET latency/_search
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"size": 0,
|
|
|
|
"aggs": {
|
|
|
|
"load_time_boxplot": {
|
|
|
|
"boxplot": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
|
|
|
"source": "doc['load_time'].value / params.timeUnit", <1>
|
|
|
|
"params": {
|
|
|
|
"timeUnit": 1000 <2>
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:latency]
|
|
|
|
|
|
|
|
<1> The `field` parameter is replaced with a `script` parameter, which uses the
|
|
|
|
script to generate values which percentiles are calculated on
|
|
|
|
<2> Scripting supports parameterized input just like any other script
|
|
|
|
|
|
|
|
This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a
|
|
|
|
stored script use the following syntax:
|
|
|
|
|
|
|
|
[source,console]
|
|
|
|
--------------------------------------------------
|
|
|
|
GET latency/_search
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"size": 0,
|
|
|
|
"aggs": {
|
|
|
|
"load_time_boxplot": {
|
|
|
|
"boxplot": {
|
|
|
|
"script": {
|
|
|
|
"id": "my_script",
|
|
|
|
"params": {
|
|
|
|
"field": "load_time"
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:latency,stored_example_script]
|
|
|
|
|
|
|
|
[[search-aggregations-metrics-boxplot-aggregation-approximation]]
|
|
|
|
==== Boxplot values are (usually) approximate
|
|
|
|
|
|
|
|
The algorithm used by the `boxplot` metric is called TDigest (introduced by
|
|
|
|
Ted Dunning in
|
|
|
|
https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf[Computing Accurate Quantiles using T-Digests]).
|
|
|
|
|
|
|
|
[WARNING]
|
|
|
|
====
|
|
|
|
Boxplot as other percentile aggregations are also
|
2020-08-17 11:27:04 -04:00
|
|
|
{wikipedia}/Nondeterministic_algorithm[non-deterministic].
|
2020-02-11 09:38:17 -05:00
|
|
|
This means you can get slightly different results using the same data.
|
|
|
|
====
|
|
|
|
|
|
|
|
[[search-aggregations-metrics-boxplot-aggregation-compression]]
|
|
|
|
==== Compression
|
|
|
|
|
|
|
|
Approximate algorithms must balance memory utilization with estimation accuracy.
|
|
|
|
This balance can be controlled using a `compression` parameter:
|
|
|
|
|
|
|
|
[source,console]
|
|
|
|
--------------------------------------------------
|
|
|
|
GET latency/_search
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"size": 0,
|
|
|
|
"aggs": {
|
|
|
|
"load_time_boxplot": {
|
|
|
|
"boxplot": {
|
|
|
|
"field": "load_time",
|
|
|
|
"compression": 200 <1>
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:latency]
|
|
|
|
|
|
|
|
<1> Compression controls memory usage and approximation error
|
|
|
|
|
|
|
|
include::percentile-aggregation.asciidoc[tags=t-digest]
|
|
|
|
|
|
|
|
==== Missing value
|
|
|
|
|
|
|
|
The `missing` parameter defines how documents that are missing a value should be treated.
|
|
|
|
By default they will be ignored but it is also possible to treat them as if they
|
|
|
|
had a value.
|
|
|
|
|
|
|
|
[source,console]
|
|
|
|
--------------------------------------------------
|
|
|
|
GET latency/_search
|
|
|
|
{
|
2020-07-20 15:59:00 -04:00
|
|
|
"size": 0,
|
|
|
|
"aggs": {
|
|
|
|
"grade_boxplot": {
|
|
|
|
"boxplot": {
|
|
|
|
"field": "grade",
|
|
|
|
"missing": 10 <1>
|
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
2020-07-20 15:59:00 -04:00
|
|
|
}
|
2020-02-11 09:38:17 -05:00
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:latency]
|
|
|
|
|
|
|
|
<1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.
|