OpenSearch/docs/reference/ml/df-analytics/apis/evaluate-dfanalytics.asciidoc

433 lines
12 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[testenv="platinum"]
[[evaluate-dfanalytics]]
=== Evaluate {dfanalytics} API
[subs="attributes"]
++++
<titleabbrev>Evaluate {dfanalytics}</titleabbrev>
++++
Evaluates the {dfanalytics} for an annotated index.
experimental[]
[[ml-evaluate-dfanalytics-request]]
==== {api-request-title}
`POST _ml/data_frame/_evaluate`
[[ml-evaluate-dfanalytics-prereq]]
==== {api-prereq-title}
If the {es} {security-features} are enabled, you must have the following privileges:
* cluster: `monitor_ml`
For more information, see <<security-privileges>> and <<built-in-roles>>.
[[ml-evaluate-dfanalytics-desc]]
==== {api-description-title}
The API packages together commonly used evaluation metrics for various types of
machine learning features. This has been designed for use on indexes created by
{dfanalytics}. Evaluation requires both a ground truth field and an analytics
result field to be present.
[[ml-evaluate-dfanalytics-request-body]]
==== {api-request-body-title}
`evaluation`::
(Required, object) Defines the type of evaluation you want to perform. The
value of this object can be different depending on the type of evaluation you
want to perform. See <<ml-evaluate-dfanalytics-resources>>.
+
--
Available evaluation types:
* `binary_soft_classification`
* `regression`
* `classification`
--
`index`::
(Required, object) Defines the `index` in which the evaluation will be
performed.
`query`::
(Optional, object) A query clause that retrieves a subset of data from the
source index. See <<query-dsl>>.
[[ml-evaluate-dfanalytics-resources]]
==== {dfanalytics-cap} evaluation resources
[[binary-sc-resources]]
===== Binary soft classification configuration objects
Binary soft classification evaluates the results of an analysis which outputs
the probability that each document belongs to a certain class. For example, in
the context of {oldetection}, the analysis outputs the probability whether each
document is an outlier.
`actual_field`::
(Required, string) The field of the `index` which contains the `ground truth`.
The data type of this field can be boolean or integer. If the data type is
integer, the value has to be either `0` (false) or `1` (true).
`predicted_probability_field`::
(Required, string) The field of the `index` that defines the probability of
whether the item belongs to the class in question or not. It's the field that
contains the results of the analysis.
`metrics`::
(Optional, object) Specifies the metrics that are used for the evaluation.
Available metrics:
`auc_roc`::
(Optional, object) The AUC ROC (area under the curve of the receiver
operating characteristic) score and optionally the curve. Default value is
{"includes_curve": false}.
`precision`::
(Optional, object) Set the different thresholds of the {olscore} at where
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
`recall`::
(Optional, object) Set the different thresholds of the {olscore} at where
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
`confusion_matrix`::
(Optional, object) Set the different thresholds of the {olscore} at where
the metrics (`tp` - true positive, `fp` - false positive, `tn` - true
negative, `fn` - false negative) are calculated. Default value is
{"at": [0.25, 0.50, 0.75]}.
[[regression-evaluation-resources]]
===== {regression-cap} evaluation objects
{regression-cap} evaluation evaluates the results of a {regression} analysis
which outputs a prediction of values.
`actual_field`::
(Required, string) The field of the `index` which contains the `ground truth`.
The data type of this field must be numerical.
`predicted_field`::
(Required, string) The field in the `index` that contains the predicted value,
in other words the results of the {regression} analysis.
`metrics`::
(Required, object) Specifies the metrics that are used for the evaluation.
Available metrics are `r_squared` and `mean_squared_error`.
[[classification-evaluation-resources]]
==== {classification-cap} evaluation objects
{classification-cap} evaluation evaluates the results of a {classanalysis} which
outputs a prediction that identifies to which of the classes each document
belongs.
`actual_field`::
(Required, string) The field of the `index` which contains the ground truth.
The data type of this field must be keyword.
`metrics`::
(Required, object) Specifies the metrics that are used for the evaluation.
Available metric is `multiclass_confusion_matrix`.
`predicted_field`::
(Required, string) The field in the `index` that contains the predicted value,
in other words the results of the {classanalysis}. The data type of this field
is string. You need to add `.keyword` to the predicted field name (the name
you put in the {classanalysis} object as `prediction_field_name` or the
default value of the same field if you didn't specified explicitly). For
example, `predicted_field` : `ml.animal_class_prediction.keyword`.
////
[[ml-evaluate-dfanalytics-results]]
==== {api-response-body-title}
`binary_soft_classification`::
(object) If you chose to do binary soft classification, the API returns the
following evaluation metrics:
`auc_roc`::: TBD
`confusion_matrix`::: TBD
`precision`::: TBD
`recall`::: TBD
////
[[ml-evaluate-dfanalytics-example]]
==== {api-examples-title}
[[ml-evaluate-binary-soft-class-example]]
===== Binary soft classification
[source,console]
--------------------------------------------------
POST _ml/data_frame/_evaluate
{
"index": "my_analytics_dest_index",
"evaluation": {
"binary_soft_classification": {
"actual_field": "is_outlier",
"predicted_probability_field": "ml.outlier_score"
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns the following results:
[source,console-result]
----
{
"binary_soft_classification": {
"auc_roc": {
"score": 0.92584757746414444
},
"confusion_matrix": {
"0.25": {
"tp": 5,
"fp": 9,
"tn": 204,
"fn": 5
},
"0.5": {
"tp": 1,
"fp": 5,
"tn": 208,
"fn": 9
},
"0.75": {
"tp": 0,
"fp": 4,
"tn": 209,
"fn": 10
}
},
"precision": {
"0.25": 0.35714285714285715,
"0.5": 0.16666666666666666,
"0.75": 0
},
"recall": {
"0.25": 0.5,
"0.5": 0.1,
"0.75": 0
}
}
}
----
[[ml-evaluate-regression-example]]
===== {regression-cap}
[source,console]
--------------------------------------------------
POST _ml/data_frame/_evaluate
{
"index": "house_price_predictions", <1>
"query": {
"bool": {
"filter": [
{ "term": { "ml.is_training": false } } <2>
]
}
},
"evaluation": {
"regression": {
"actual_field": "price", <3>
"predicted_field": "ml.price_prediction", <4>
"metrics": {
"r_squared": {},
"mean_squared_error": {}
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> The output destination index from a {dfanalytics} {reganalysis}.
<2> In this example, a test/train split (`training_percent`) was defined for the
{reganalysis}. This query limits evaluation to be performed on the test split
only.
<3> The ground truth value for the actual house price. This is required in order
to evaluate results.
<4> The predicted value for house price calculated by the {reganalysis}.
The following example calculates the training error:
[source,console]
--------------------------------------------------
POST _ml/data_frame/_evaluate
{
"index": "student_performance_mathematics_reg",
"query": {
"term": {
"ml.is_training": {
"value": true <1>
}
}
},
"evaluation": {
"regression": {
"actual_field": "G3", <2>
"predicted_field": "ml.G3_prediction", <3>
"metrics": {
"r_squared": {},
"mean_squared_error": {}
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> In this example, a test/train split (`training_percent`) was defined for the
{reganalysis}. This query limits evaluation to be performed on the train split
only. It means that a training error will be calculated.
<2> The field that contains the ground truth value for the actual student
performance. This is required in order to evaluate results.
<3> The field that contains the predicted value for student performance
calculated by the {reganalysis}.
The next example calculates the testing error. The only difference compared with
the previous example is that `ml.is_training` is set to `false` this time, so
the query excludes the train split from the evaluation.
[source,console]
--------------------------------------------------
POST _ml/data_frame/_evaluate
{
"index": "student_performance_mathematics_reg",
"query": {
"term": {
"ml.is_training": {
"value": false <1>
}
}
},
"evaluation": {
"regression": {
"actual_field": "G3", <2>
"predicted_field": "ml.G3_prediction", <3>
"metrics": {
"r_squared": {},
"mean_squared_error": {}
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> In this example, a test/train split (`training_percent`) was defined for the
{reganalysis}. This query limits evaluation to be performed on the test split
only. It means that a testing error will be calculated.
<2> The field that contains the ground truth value for the actual student
performance. This is required in order to evaluate results.
<3> The field that contains the predicted value for student performance
calculated by the {reganalysis}.
[[ml-evaluate-classification-example]]
===== {classification-cap}
[source,console]
--------------------------------------------------
POST _ml/data_frame/_evaluate
{
"index": "animal_classification",
"evaluation": {
"classification": { <1>
"actual_field": "animal_class", <2>
"predicted_field": "ml.animal_class_prediction.keyword", <3>
"metrics": {
"multiclass_confusion_matrix" : {} <4>
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> The evaluation type.
<2> The field that contains the ground truth value for the actual animal
classification. This is required in order to evaluate results.
<3> The field that contains the predicted value for animal classification by
the {classanalysis}. Since the field storing predicted class is dynamically
mapped as text and keyword, you need to add the `.keyword` suffix to the name.
<4> Specifies the metric for the evaluation.
The API returns the following result:
[source,console-result]
--------------------------------------------------
{
"classification" : {
"multiclass_confusion_matrix" : {
"confusion_matrix" : [
{
"actual_class" : "cat", <1>
"actual_class_doc_count" : 12, <2>
"predicted_classes" : [ <3>
{
"predicted_class" : "cat",
"count" : 12 <4>
},
{
"predicted_class" : "dog",
"count" : 0 <5>
}
],
"other_predicted_class_doc_count" : 0 <6>
},
{
"actual_class" : "dog",
"actual_class_doc_count" : 11,
"predicted_classes" : [
{
"predicted_class" : "dog",
"count" : 7
},
{
"predicted_class" : "cat",
"count" : 4
}
],
"other_predicted_class_doc_count" : 0
}
],
"other_actual_class_count" : 0
}
}
}
--------------------------------------------------
<1> The name of the actual class that the analysis tried to predict.
<2> The number of documents in the index that belong to the `actual_class`.
<3> This object contains the list of the predicted classes and the number of
predictions associated with the class.
<4> The number of cats in the dataset that are correctly identified as cats.
<5> The number of cats in the dataset that are incorrectly classified as dogs.
<6> The number of documents that are classified as a class that is not listed as
a `predicted_class`.