OpenSearch/TESTING.asciidoc

692 lines
28 KiB
Plaintext
Raw Normal View History

[[TestingFrameworkCheatsheet]]
= Testing
[partintro]
OpenSearch uses jUnit for testing, it also uses randomness in the
tests, that can be set using a seed, the following is a cheatsheet of
options for running the tests for OpenSearch.
== Requirements
You will need the following pieces of software to run these tests:
- Docker & Docker Compose
- Vagrant
- JDK 14
- Gradle
== Creating packages
To create a distribution without running the tests, simply run the
following:
-----------------------------
./gradlew assemble
-----------------------------
To create a platform-specific build, use the
following depending on your operating system:
-----------------------------
./gradlew :distribution:archives:linux-tar:assemble
./gradlew :distribution:archives:darwin-tar:assemble
./gradlew :distribution:archives:windows-zip:assemble
-----------------------------
=== Running OpenSearch from a checkout
In order to run OpenSearch from source without building a package, you can
2016-07-28 08:38:13 -04:00
run it using Gradle:
-------------------------------------
./gradlew run
-------------------------------------
==== Launching and debugging from an IDE
If you want to run OpenSearch from your IDE, the `./gradlew run` task
supports a remote debugging option:
---------------------------------------------------------------------------
./gradlew run --debug-jvm
---------------------------------------------------------------------------
This will instruct all JVMs (including any that run cli tools such as creating the keyring or adding users)
to suspend and initiate a debug connection on port incrementing from `5005`.
As such the IDE needs to be instructed to listen for connections on this port.
Since we might run multiple JVMs as part of configuring and starting the cluster it's
recommended to configure the IDE to initiate multiple listening attempts. In case of IntelliJ, this option
is called "Auto restart" and needs to be checked. In case of Eclipse, "Connection limit" setting
needs to be configured with a greater value (ie 10 or more).
NOTE: If you have imported the project into IntelliJ according to the instructions in
link:/DEVELOPER_GUIDE.md#importing-the-project-into-intellij-idea[DEVELOPER_GUIDE.md] then a debug run configuration
named "Debug OpenSearch" will be created for you and configured appropriately.
==== Other useful arguments
- In order to start a node with a different max heap space add: `-Dtests.heap.size=4G`
- In order to disable assertions add: `-Dtests.asserts=false`
- In order to use a custom data directory: `--data-dir=/tmp/foo`
- In order to preserve data in between executions: `--preserve-data`
- In order to remotely attach a debugger to the process: `--debug-jvm`
- In order to set a different keystore password: `--keystore-password yourpassword`
- In order to set an OpenSearch setting, provide a setting with the following prefix: `-Dtests.opensearch.`
=== Test case filtering.
- `tests.class` is a class-filtering shell-like glob pattern,
- `tests.method` is a method-filtering glob pattern.
Run a single test case (variants)
----------------------------------------------------------
./gradlew test -Dtests.class=org.opensearch.package.ClassName
./gradlew test "-Dtests.class=*.ClassName"
----------------------------------------------------------
Run all tests in a package and its sub-packages
----------------------------------------------------
./gradlew test "-Dtests.class=org.opensearch.package.*"
----------------------------------------------------
Run any test methods that contain 'esi' (like: ...r*esi*ze...)
-------------------------------
./gradlew test "-Dtests.method=*esi*"
-------------------------------
Run all tests that are waiting for a bugfix (disabled by default)
------------------------------------------------
./gradlew test -Dtests.filter=@awaitsfix
------------------------------------------------
=== Seed and repetitions.
Run with a given seed (seed is a hex-encoded long).
------------------------------
./gradlew test -Dtests.seed=DEADBEEF
------------------------------
=== Repeats _all_ tests of ClassName N times.
Every test repetition will have a different method seed
(derived from a single random master seed).
--------------------------------------------------
./gradlew test -Dtests.iters=N -Dtests.class=*.ClassName
--------------------------------------------------
=== Repeats _all_ tests of ClassName N times.
Every test repetition will have exactly the same master (0xdead) and
method-level (0xbeef) seed.
------------------------------------------------------------------------
./gradlew test -Dtests.iters=N -Dtests.class=*.ClassName -Dtests.seed=DEAD:BEEF
------------------------------------------------------------------------
=== Repeats a given test N times
(note the filters - individual test repetitions are given suffixes,
ie: testFoo[0], testFoo[1], etc... so using testmethod or tests.method
ending in a glob is necessary to ensure iterations are run).
-------------------------------------------------------------------------
./gradlew test -Dtests.iters=N -Dtests.class=*.ClassName -Dtests.method=mytest*
-------------------------------------------------------------------------
Repeats N times but skips any tests after the first failure or M initial failures.
-------------------------------------------------------------
./gradlew test -Dtests.iters=N -Dtests.failfast=true -Dtestcase=...
./gradlew test -Dtests.iters=N -Dtests.maxfailures=M -Dtestcase=...
-------------------------------------------------------------
=== Test groups.
Test groups can be enabled or disabled (true/false).
Default value provided below in [brackets].
------------------------------------------------------------------
./gradlew test -Dtests.awaitsfix=[false] - known issue (@AwaitsFix)
------------------------------------------------------------------
=== Load balancing and caches.
By default the tests run on multiple processes using all the available cores on all
available CPUs. Not including hyper-threading.
If you want to explicitly specify the number of JVMs you can do so on the command
line:
----------------------------
./gradlew test -Dtests.jvms=8
----------------------------
Or in `~/.gradle/gradle.properties`:
----------------------------
systemProp.tests.jvms=8
----------------------------
Its difficult to pick the "right" number here. Hypercores don't count for CPU
intensive tests and you should leave some slack for JVM-interal threads like
the garbage collector. And you have to have enough RAM to handle each JVM.
2014-02-25 06:38:22 -05:00
=== Test compatibility.
It is possible to provide a version that allows to adapt the tests behaviour
to older features or bugs that have been changed or fixed in the meantime.
-----------------------------------------
./gradlew test -Dtests.compatibility=1.0.0
-----------------------------------------
2014-02-25 06:38:22 -05:00
=== Miscellaneous.
Run all tests without stopping on errors (inspect log files).
-----------------------------------------
./gradlew test -Dtests.haltonfailure=false
-----------------------------------------
Run more verbose output (JVM parameters, etc.).
----------------------
./gradlew test -verbose
----------------------
2014-02-25 06:38:22 -05:00
Change the default suite timeout to 5 seconds for all
tests (note the exclamation mark).
---------------------------------------
./gradlew test -Dtests.timeoutSuite=5000! ...
---------------------------------------
Change the logging level of OpenSearch (not Gradle)
--------------------------------
./gradlew test -Dtests.opensearch.logger.level=DEBUG
--------------------------------
Print all the logging output from the test runs to the commandline
even if tests are passing.
------------------------------
./gradlew test -Dtests.output=always
------------------------------
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
Configure the heap size.
------------------------------
./gradlew test -Dtests.heap.size=512m
------------------------------
Pass arbitrary jvm arguments.
------------------------------
# specify heap dump path
./gradlew test -Dtests.jvm.argline="-XX:HeapDumpPath=/path/to/heapdumps"
# enable gc logging
./gradlew test -Dtests.jvm.argline="-verbose:gc"
# enable security debugging
./gradlew test -Dtests.jvm.argline="-Djava.security.debug=access,failure"
------------------------------
== Running verification tasks
To run all verification tasks, including static checks, unit tests, and integration tests:
---------------------------------------------------------------------------
./gradlew check
---------------------------------------------------------------------------
Note that this will also run the unit tests and precommit tasks first. If you want to just
run the in memory cluster integration tests (because you are debugging them):
---------------------------------------------------------------------------
./gradlew internalClusterTest
---------------------------------------------------------------------------
If you want to just run the precommit checks:
---------------------------------------------------------------------------
./gradlew precommit
---------------------------------------------------------------------------
Some of these checks will require `docker-compose` installed for bringing up
test fixtures. If it's not present those checks will be skipped automatically.
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
== Testing the REST layer
The REST layer is tested through specific tests that are executed against
a cluster that is configured and initialized via Gradle. The tests
themselves can be written in either Java or with a YAML based DSL.
YAML based REST tests should be preferred since these are shared between clients. The YAML based tests describe the
operations to be executed and the obtained results that need to be tested.
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
The YAML tests support various operators defined in the link:/rest-api-spec/src/main/resources/rest-api-spec/test/README.asciidoc[rest-api-spec] and adhere to the link:/rest-api-spec/README.markdown[OpenSearch REST API JSON specification]
In order to run the YAML tests, the relevant API specification needs
to be on the test classpath. Any gradle project that has support for REST
tests will get the primary API on it's class path. However, to better support
Gradle incremental builds, it is recommended to explicitly declare which
parts of the API the tests depend upon.
For example:
---------------------------------------------------------------------------
restResources {
restApi {
includeCore '_common', 'indices', 'index', 'cluster', 'nodes', 'get', 'ingest'
}
}
---------------------------------------------------------------------------
The REST tests are run automatically when executing the "./gradlew check" command. To run only the
7.x - Create plugin for yamlTest task (#56841) (#59090) This commit creates a new Gradle plugin to provide a separate task name and source set for running YAML based REST tests. The only project converted to use the new plugin in this PR is distribution/archives/integ-test-zip. For which the testing has been moved to :rest-api-spec since it makes the most sense and it avoids a small but awkward change to the distribution plugin. The remaining cases in modules, plugins, and x-pack will be handled in followups. This plugin is distinctly different from the plugin introduced in #55896 since the YAML REST tests are intended to be black box tests over HTTP. As such they should not (by default) have access to the classpath for that which they are testing. The YAML based REST tests will be moved to separate source sets (yamlRestTest). The which source is the target for the test resources is dependent on if this new plugin is applied. If it is not applied, it will default to the test source set. Further, this introduces a breaking change for plugin developers that use the YAML testing framework. They will now need to either use the new source set and matching task, or configure the rest resources to use the old "test" source set that matches the old integTest task. (The former should be preferred). As part of this change (which is also breaking for plugin developers) the rest resources plugin has been removed from the build plugin and now requires either explicit application or application via the new YAML REST test plugin. Plugin developers should be able to fix the breaking changes to the YAML tests by adding apply plugin: 'elasticsearch.yaml-rest-test' and moving the YAML tests under a yamlRestTest folder (instead of test)
2020-07-06 15:16:26 -04:00
YAML REST tests use the following command (modules and plugins may also include YAML REST tests):
---------------------------------------------------------------------------
./gradlew :rest-api-spec:yamlRestTest
---------------------------------------------------------------------------
A specific test case can be run with the following command:
---------------------------------------------------------------------------
./gradlew ':rest-api-spec:yamlRestTest' \
--tests "org.opensearch.test.rest.ClientYamlTestSuiteIT" \
-Dtests.method="test {p0=cat.segments/10_basic/Help}"
---------------------------------------------------------------------------
The YAML REST tests support all the options provided by the randomized runner, plus the following:
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
* `tests.rest.suite`: comma separated paths of the test suites to be run
(by default loaded from /rest-api-spec/test). It is possible to run only a subset
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
of the tests providing a sub-folder or even a single yaml file (the default
/rest-api-spec/test prefix is optional when files are loaded from classpath)
added REST test suites runner The REST layer can now be tested through tests that are shared between all the elasticsearch official clients. The tests are based on REST specification that can be found on the elasticsearch-rest-api-spec project and consist of YAML files that describe the operations to be executed and the obtained results that need to be tested. REST tests can be executed through the ElasticsearchRestTests class, which relies on the rest-spec git submodule that contains the rest spec and tests pulled from the elasticsearch-rest-spec-api project. The rest-spec submodule gets automatically initialized and updated through maven (generate-test-resources phase). The REST runner and the needed classes are distributed within the test artifact. The following are the options supported by the REST tests runner: - tests.rest[true|false|host:port]: determines whether the REST tests need to be run and if so whether to rely on an external cluster (providing host and port) or fire a test cluster (default) - tests.rest.suite: comma separated paths of the test suites to be run (by default loaded from /rest-spec/test classpath). it is possible to run only a subset of the tests providing a sub-folder or even a single yaml file (the default /rest-spec/test prefix is optional when files are loaded from classpath) e.g. -Dtests.rest.suite=index,get,create/10_with_id - tests.rest.spec: REST spec path (default /rest-spec/api from classpath) - tests.iters: runs multiple iterations - tests.seed: seed to base the random behaviours on - tests.appendseed[true|false]: enables adding the seed to each test section's description (default false) - tests.cluster_seed: seed used to create the test cluster (if enabled) Closes #4469
2013-12-07 09:41:51 -05:00
e.g. -Dtests.rest.suite=index,get,create/10_with_id
* `tests.rest.blacklist`: comma separated globs that identify tests that are
blacklisted and need to be skipped
e.g. -Dtests.rest.blacklist=index/*/Index document,get/10_basic/*
Java REST tests can be run with the "javaRestTest" task.
For example :
---------------------------------------------------------------------------
./gradlew :modules:mapper-extras:javaRestTest
---------------------------------------------------------------------------
A specific test case can be run with the following syntax (fqn.test {params}):
---------------------------------------------------------------------------
./gradlew ':modules:mapper-extras:javaRestTest' \
--tests "org.opensearch.index.mapper.TokenCountFieldMapperIntegrationIT.testSearchByTokenCount {storeCountedFields=true loadCountedFields=false}"
---------------------------------------------------------------------------
yamlRestTest's and javaRestTest's are easy to identify, since they are found in a
respective source directory. However, there are some more specialized REST tests
that use custom task names. These are usually found in "qa" projects commonly
use the "integTest" task.
If in doubt about which command to use, simply run <gradle path>:check
Note that the REST tests, like all the integration tests, can be run against an external
cluster by specifying the `tests.cluster` property, which if present needs to contain a
comma separated list of nodes to connect to (e.g. localhost:9300). A transport client will
be created based on that and used for all the before|after test operations, and to extract
the http addresses of the nodes so that REST requests can be sent to them.
== Testing packaging
The packaging tests use Vagrant virtual machines or cloud instances to verify
that installing and running OpenSearch distributions works correctly on
supported operating systems. These tests should really only be run on ephemeral
systems because they're destructive; that is, these tests install and remove
packages and freely modify system settings, so you will probably regret it if
you execute them on your development machine.
When you run a packaging test, Gradle will set up the target VM and mount your
repository directory in the VM. Once this is done, a Gradle task will issue a
Vagrant command to run a *nested* Gradle task on the VM. This nested Gradle
runs the actual "destructive" test classes.
. Install Virtual Box and Vagrant.
+
. (Optional) Install https://github.com/fgrehm/vagrant-cachier[vagrant-cachier] to squeeze
a bit more performance out of the process (Note: as of 2021, vagrant-cachier is unmaintained):
+
--------------------------------------
vagrant plugin install vagrant-cachier
--------------------------------------
+
. You can run all of the OS packaging tests with `./gradlew packagingTest`.
This task includes our legacy `bats` tests. To run only the OS tests that are
written in Java, run `.gradlew distroTest`, will cause Gradle to build the tar,
zip, and deb packages and all the plugins. It will then run the tests on every
available system. This will take a very long time.
+
Fortunately, the various systems under test have their own Gradle tasks under
`qa/os`. To find out what packaging combinations can be tested on a system, run
the `tasks` task. For example:
+
----------------------------------
./gradlew :qa:os:ubuntu-1804:tasks
----------------------------------
+
If you want a quick test of the tarball and RPM packagings for Centos 7, you
would run:
+
-------------------------------------------------------------------------------------------------
./gradlew :qa:os:centos-7:distroTest.rpm :qa:os:centos-7:distroTest.linux-archive
-------------------------------------------------------------------------------------------------
Note that if you interrupt Gradle in the middle of running these tasks, any boxes started
will remain running and you'll have to stop them manually with `./gradlew --stop` or
`vagrant halt`.
2015-08-17 11:45:18 -04:00
[test] Gradle-ify vagrant tests This gets the tar and tar_plugins tests working in gradle. It does so by adding a subproject, qa/vagrant, which adds the following tasks: Verification ------------ checkPackages - Check the packages against a representative sample of the linux distributions we have in our Vagrantfile checkPackagesAllDistros - Check the packages against all the linux distributions we have in our Vagrantfile Package Verification -------------------- checkCentos6 - Run packaging tests against centos-6 checkCentos7 - Run packaging tests against centos-7 checkDebian8 - Run packaging tests against debian-8 checkFedora22 - Run packaging tests against fedora-22 checkOel7 - Run packaging tests against oel-7 checkOpensuse13 - Run packaging tests against opensuse-13 checkSles12 - Run packaging tests against sles-12 checkUbuntu1204 - Run packaging tests against ubuntu-1204 checkUbuntu1404 - Run packaging tests against ubuntu-1404 checkUbuntu1504 - Run packaging tests against ubuntu-1504 Vagrant ------- smokeTestCentos6 - Smoke test the centos-6 VM smokeTestCentos7 - Smoke test the centos-7 VM smokeTestDebian8 - Smoke test the debian-8 VM smokeTestFedora22 - Smoke test the fedora-22 VM smokeTestOel7 - Smoke test the oel-7 VM smokeTestOpensuse13 - Smoke test the opensuse-13 VM smokeTestSles12 - Smoke test the sles-12 VM smokeTestUbuntu1204 - Smoke test the ubuntu-1204 VM smokeTestUbuntu1404 - Smoke test the ubuntu-1404 VM smokeTestUbuntu1504 - Smoke test the ubuntu-1504 VM vagrantHaltCentos6 - Shutdown the vagrant VM running centos-6 vagrantHaltCentos7 - Shutdown the vagrant VM running centos-7 vagrantHaltDebian8 - Shutdown the vagrant VM running debian-8 vagrantHaltFedora22 - Shutdown the vagrant VM running fedora-22 vagrantHaltOel7 - Shutdown the vagrant VM running oel-7 vagrantHaltOpensuse13 - Shutdown the vagrant VM running opensuse-13 vagrantHaltSles12 - Shutdown the vagrant VM running sles-12 vagrantHaltUbuntu1204 - Shutdown the vagrant VM running ubuntu-1204 vagrantHaltUbuntu1404 - Shutdown the vagrant VM running ubuntu-1404 vagrantHaltUbuntu1504 - Shutdown the vagrant VM running ubuntu-1504 vagrantSmokeTest - Smoke test some representative distros from the Vagrantfile vagrantSmokeTestAllDistros - Smoke test all distros from the Vagrantfile vagrantUpCentos6 - Startup a vagrant VM running centos-6 vagrantUpCentos7 - Startup a vagrant VM running centos-7 vagrantUpDebian8 - Startup a vagrant VM running debian-8 vagrantUpFedora22 - Startup a vagrant VM running fedora-22 vagrantUpOel7 - Startup a vagrant VM running oel-7 vagrantUpOpensuse13 - Startup a vagrant VM running opensuse-13 vagrantUpSles12 - Startup a vagrant VM running sles-12 vagrantUpUbuntu1204 - Startup a vagrant VM running ubuntu-1204 vagrantUpUbuntu1404 - Startup a vagrant VM running ubuntu-1404 vagrantUpUbuntu1504 - Startup a vagrant VM running ubuntu-1504 It does not make the "check" task depend on "checkPackages" so running the vagrant tests is still optional. They are slow and depend on vagrant and virtualbox. The Package Verification tasks are useful for testing individual distros. The Vagrant tasks are listed in `gradle tasks` primarily for discoverability.
2015-11-02 12:40:47 -05:00
All the regular vagrant commands should just work so you can get a shell in a
VM running trusty by running
`vagrant up ubuntu-1604 --provider virtualbox && vagrant ssh ubuntu-1604`.
These are the linux flavors supported, all of which we provide images for
2015-08-17 11:45:18 -04:00
* ubuntu-1604 aka xenial
* ubuntu-1804 aka bionic beaver
* debian-8 aka jessie
* debian-9 aka stretch, the current debian stable distribution
* centos-6
* centos-7
2019-05-01 18:53:33 -04:00
* rhel-8
* fedora-28
* fedora-29
* oel-6 aka Oracle Enterprise Linux 6
* oel-7 aka Oracle Enterprise Linux 7
* sles-12
* opensuse-42 aka Leap
We're missing the following from the support matrix because there aren't high
quality boxes available in vagrant atlas:
2015-08-17 11:45:18 -04:00
* sles-11
=== Testing packaging on Windows
The packaging tests also support Windows Server 2012R2 and Windows Server 2016.
Unfortunately we're not able to provide boxes for them in open source use
because of licensing issues. Any Virtualbox image that has WinRM and Powershell
enabled for remote users should work.
Testing on Windows requires the https://github.com/criteo/vagrant-winrm[vagrant-winrm] plugin.
------------------------------------
vagrant plugin install vagrant-winrm
------------------------------------
Specify the image IDs of the Windows boxes to gradle with the following project
properties. They can be set in `~/.gradle/gradle.properties` like
------------------------------------
vagrant.windows-2012r2.id=my-image-id
vagrant.windows-2016.id=another-image-id
------------------------------------
or passed on the command line like `-Pvagrant.windows-2012r2.id=my-image-id`
`-Pvagrant.windows-2016=another-image-id`
These properties are required for Windows support in all gradle tasks that
handle packaging tests. Either or both may be specified.
2015-08-17 11:45:18 -04:00
If you're running vagrant commands outside of gradle, specify the Windows boxes
with the environment variables
* `VAGRANT_WINDOWS_2012R2_BOX`
* `VAGRANT_WINDOWS_2016_BOX`
=== Testing VMs are disposable
It's important to think of VMs like cattle. If they become lame you just shoot
them and let vagrant reprovision them. Say you've hosed your precise VM:
2015-08-17 11:45:18 -04:00
----------------------------------------------------
vagrant ssh ubuntu-1604 -c 'sudo rm -rf /bin'; echo oops
----------------------------------------------------
2015-08-17 11:45:18 -04:00
All you've got to do to get another one is
2015-08-17 11:45:18 -04:00
----------------------------------------------
vagrant destroy -f ubuntu-1604 && vagrant up ubuntu-1604 --provider virtualbox
----------------------------------------------
2015-08-17 11:45:18 -04:00
The whole process takes a minute and a half on a modern laptop, two and a half
without vagrant-cachier.
Some vagrant commands will work on all VMs at once:
2015-08-17 11:45:18 -04:00
------------------
vagrant halt
vagrant destroy -f
------------------
[test] Gradle-ify vagrant tests This gets the tar and tar_plugins tests working in gradle. It does so by adding a subproject, qa/vagrant, which adds the following tasks: Verification ------------ checkPackages - Check the packages against a representative sample of the linux distributions we have in our Vagrantfile checkPackagesAllDistros - Check the packages against all the linux distributions we have in our Vagrantfile Package Verification -------------------- checkCentos6 - Run packaging tests against centos-6 checkCentos7 - Run packaging tests against centos-7 checkDebian8 - Run packaging tests against debian-8 checkFedora22 - Run packaging tests against fedora-22 checkOel7 - Run packaging tests against oel-7 checkOpensuse13 - Run packaging tests against opensuse-13 checkSles12 - Run packaging tests against sles-12 checkUbuntu1204 - Run packaging tests against ubuntu-1204 checkUbuntu1404 - Run packaging tests against ubuntu-1404 checkUbuntu1504 - Run packaging tests against ubuntu-1504 Vagrant ------- smokeTestCentos6 - Smoke test the centos-6 VM smokeTestCentos7 - Smoke test the centos-7 VM smokeTestDebian8 - Smoke test the debian-8 VM smokeTestFedora22 - Smoke test the fedora-22 VM smokeTestOel7 - Smoke test the oel-7 VM smokeTestOpensuse13 - Smoke test the opensuse-13 VM smokeTestSles12 - Smoke test the sles-12 VM smokeTestUbuntu1204 - Smoke test the ubuntu-1204 VM smokeTestUbuntu1404 - Smoke test the ubuntu-1404 VM smokeTestUbuntu1504 - Smoke test the ubuntu-1504 VM vagrantHaltCentos6 - Shutdown the vagrant VM running centos-6 vagrantHaltCentos7 - Shutdown the vagrant VM running centos-7 vagrantHaltDebian8 - Shutdown the vagrant VM running debian-8 vagrantHaltFedora22 - Shutdown the vagrant VM running fedora-22 vagrantHaltOel7 - Shutdown the vagrant VM running oel-7 vagrantHaltOpensuse13 - Shutdown the vagrant VM running opensuse-13 vagrantHaltSles12 - Shutdown the vagrant VM running sles-12 vagrantHaltUbuntu1204 - Shutdown the vagrant VM running ubuntu-1204 vagrantHaltUbuntu1404 - Shutdown the vagrant VM running ubuntu-1404 vagrantHaltUbuntu1504 - Shutdown the vagrant VM running ubuntu-1504 vagrantSmokeTest - Smoke test some representative distros from the Vagrantfile vagrantSmokeTestAllDistros - Smoke test all distros from the Vagrantfile vagrantUpCentos6 - Startup a vagrant VM running centos-6 vagrantUpCentos7 - Startup a vagrant VM running centos-7 vagrantUpDebian8 - Startup a vagrant VM running debian-8 vagrantUpFedora22 - Startup a vagrant VM running fedora-22 vagrantUpOel7 - Startup a vagrant VM running oel-7 vagrantUpOpensuse13 - Startup a vagrant VM running opensuse-13 vagrantUpSles12 - Startup a vagrant VM running sles-12 vagrantUpUbuntu1204 - Startup a vagrant VM running ubuntu-1204 vagrantUpUbuntu1404 - Startup a vagrant VM running ubuntu-1404 vagrantUpUbuntu1504 - Startup a vagrant VM running ubuntu-1504 It does not make the "check" task depend on "checkPackages" so running the vagrant tests is still optional. They are slow and depend on vagrant and virtualbox. The Package Verification tasks are useful for testing individual distros. The Vagrant tasks are listed in `gradle tasks` primarily for discoverability.
2015-11-02 12:40:47 -05:00
`vagrant up` would normally start all the VMs but we've prevented that because
that'd consume a ton of ram.
=== Iterating on packaging tests
Because our packaging tests are capable of testing many combinations of OS
(e.g., Windows, Linux, etc.), package type (e.g., zip file, RPM, etc.) and so forth, it's
faster to develop against smaller subsets of the tests. For example, to run
tests for the default archive distribution on Fedora 28:
-----------------------------------------------------------
./gradlew :qa:os:fedora-28:distroTest.linux-archive
-----------------------------------------------------------
These test tasks can use the `--tests`, `--info`, and `--debug` parameters just like
non-OS tests can. For example:
-----------------------------------------------------------
./gradlew :qa:os:fedora-28:distroTest.linux-archive \
--tests "com.opensearch.packaging.test.ArchiveTests"
-----------------------------------------------------------
== Testing backwards compatibility
Backwards compatibility tests exist to test upgrading from each supported version
to the current version. To run them all use:
-------------------------------------------------
./gradlew bwcTest
-------------------------------------------------
A specific version can be tested as well. For example, to test bwc with
version 5.3.2 run:
-------------------------------------------------
./gradlew v5.3.2#bwcTest
-------------------------------------------------
Use -Dtest.class and -Dtests.method to run a specific bwcTest test.
For example to run a specific tests from the x-pack rolling upgrade from 7.7.0:
-------------------------------------------------
./gradlew :x-pack:qa:rolling-upgrade:v7.7.0#bwcTest \
-Dtests.class=org.opensearch.upgrades.UpgradeClusterClientYamlTestSuiteIT \
-Dtests.method="test {p0=*/40_ml_datafeed_crud/*}"
-------------------------------------------------
Tests are ran for versions that are not yet released but with which the current version will be compatible with.
These are automatically checked out and built from source.
See link:./buildSrc/src/main/java/org/opensearch/gradle/VersionCollection.java[VersionCollection]
and link:./distribution/bwc/build.gradle[distribution/bwc/build.gradle]
for more information.
When running `./gradlew check`, minimal bwc checks are also run against compatible versions that are not yet released.
==== BWC Testing against a specific remote/branch
Sometimes a backward compatibility change spans two versions. A common case is a new functionality
that needs a BWC bridge in an unreleased versioned of a release branch (for example, 5.x).
To test the changes, you can instruct Gradle to build the BWC version from a another remote/branch combination instead of
pulling the release branch from GitHub. You do so using the `bwc.remote` and `bwc.refspec.BRANCH` system properties:
-------------------------------------------------
./gradlew check -Dbwc.remote=${remote} -Dbwc.refspec.5.x=index_req_bwc_5.x
-------------------------------------------------
The branch needs to be available on the remote that the BWC makes of the
repository you run the tests from. Using the remote is a handy trick to make
sure that a branch is available and is up to date in the case of multiple runs.
Example:
Say you need to make a change to `master` and have a BWC layer in `5.x`. You
will need to:
. Create a branch called `index_req_change` off your remote `${remote}`. This
will contain your change.
. Create a branch called `index_req_bwc_5.x` off `5.x`. This will contain your bwc layer.
. Push both branches to your remote repository.
. Run the tests with `./gradlew check -Dbwc.remote=${remote} -Dbwc.refspec.5.x=index_req_bwc_5.x`.
==== Skip fetching latest
For some BWC testing scenarios, you want to use the local clone of the
repository without fetching latest. For these use cases, you can set the system
property `tests.bwc.git_fetch_latest` to `false` and the BWC builds will skip
fetching the latest from the remote.
== How to write good tests?
=== Base classes for test cases
There are multiple base classes for tests:
2019-03-01 09:16:52 -05:00
* **`OpenSearchTestCase`**: The base class of all tests. It is typically extended
2019-03-01 09:16:52 -05:00
directly by unit tests.
* **`OpenSearchSingleNodeTestCase`**: This test case sets up a cluster that has a
2019-03-01 09:16:52 -05:00
single node.
* **`OpenSearchIntegTestCase`**: An integration test case that creates a cluster that
2019-03-01 09:16:52 -05:00
might have multiple nodes.
* **`OpenSearchRestTestCase`**: An integration tests that interacts with an external
cluster via the REST API. This is used for Java based REST tests.
* **`OpenSearchClientYamlSuiteTestCase` **: A subclass of `OpenSearchRestTestCase` used to run
YAML based REST tests.
=== Good practices
==== What kind of tests should I write?
Unit tests are the preferred way to test some functionality: most of the time
they are simpler to understand, more likely to reproduce, and unlikely to be
affected by changes that are unrelated to the piece of functionality that is
being tested.
The reason why `OpenSearchSingleNodeTestCase` exists is that all our components used to
be very hard to set up in isolation, which had led us to having a number of
integration tests but close to no unit tests. `OpenSearchSingleNodeTestCase` is a
workaround for this issue which provides an easy way to spin up a node and get
access to components that are hard to instantiate like `IndicesService`.
Whenever practical, you should prefer unit tests.
Many tests extend `OpenSearchIntegTestCase`, mostly because this is how most tests used
to work in the early days of Elasticsearch. However the complexity of these
tests tends to make them hard to debug. Whenever the functionality that is
being tested isn't intimately dependent on how OpenSearch behaves as a
cluster, it is recommended to write unit tests or REST tests instead.
In short, most new functionality should come with unit tests, and optionally
REST tests to test integration.
==== Refactor code to make it easier to test
Unfortunately, a large part of our code base is still hard to unit test.
Sometimes because some classes have lots of dependencies that make them hard to
instantiate. Sometimes because API contracts make tests hard to write. Code
refactors that make functionality easier to unit test are encouraged. If this
sounds very abstract to you, you can have a look at
https://github.com/elastic/elasticsearch/pull/16610[this pull request] for
instance, which is a good example. It refactors `IndicesRequestCache` in such
a way that:
- it no longer depends on objects that are hard to instantiate such as
`IndexShard` or `SearchContext`,
- time-based eviction is applied on top of the cache rather than internally,
which makes it easier to assert on what the cache is expected to contain at
a given time.
=== Bad practices
==== Use randomized-testing for coverage
In general, randomization should be used for parameters that are not expected
to affect the behavior of the functionality that is being tested. For instance
the number of shards should not impact `date_histogram` aggregations, and the
choice of the `store` type (`niofs` vs `mmapfs`) does not affect the results of
a query. Such randomization helps improve confidence that we are not relying on
implementation details of one component or specifics of some setup.
However it should not be used for coverage. For instance if you are testing a
piece of functionality that enters different code paths depending on whether
the index has 1 shards or 2+ shards, then we shouldn't just test against an
index with a random number of shards: there should be one test for the 1-shard
case, and another test for the 2+ shards case.
==== Abuse randomization in multi-threaded tests
Multi-threaded tests are often not reproducible due to the fact that there is
no guarantee on the order in which operations occur across threads. Adding
randomization to the mix usually makes things worse and should be done with
care.
== Test coverage analysis
Generating test coverage reports for OpenSearch is currently not possible through Gradle.
However, it _is_ possible to gain insight in code coverage using IntelliJ's built-in coverage
analysis tool that can measure coverage upon executing specific tests. Eclipse may also be able
to do the same using the EclEmma plugin.
Test coverage reporting used to be possible with JaCoCo when OpenSearch was using Maven
as its build system. Since the switch to Gradle though, this is no longer possible, seeing as
the code currently used to build OpenSearch does not allow JaCoCo to recognize its tests.
For more information on this, see the discussion in https://github.com/elastic/elasticsearch/issues/28867[issue #28867].
---------------------------------------------------------------------------
2017-01-16 04:26:12 -05:00
Read your IDE documentation for how to attach a debugger to a JVM process.
== Building with extra plugins
Additional plugins may be built alongside OpenSearch, where their
dependency on OpenSearch will be substituted with the local OpenSearch
build. To add your plugin, create a directory called opensearch-extra as
a sibling of OpenSearch. Checkout your plugin underneath opensearch-extra
and the build will automatically pick it up. You can verify the plugin is
included as part of the build by checking the projects of the build.
---------------------------------------------------------------------------
./gradlew projects
---------------------------------------------------------------------------
== Environment misc
There is a known issue with macOS localhost resolve strategy that can cause
some integration tests to fail. This is because integration tests have timings
for cluster formation, discovery, etc. that can be exceeded if name resolution
takes a long time.
To fix this, make sure you have your computer name (as returned by `hostname`)
inside `/etc/hosts`, e.g.:
....
127.0.0.1 localhost OpenSearchMBP.local
255.255.255.255 broadcasthost
::1 localhost OpenSearchMBP.local`
....
== Benchmarking
For changes that might affect the performance characteristics of OpenSearch
you should also run macrobenchmarks. There is also a macrobenchmarking tool
called https://github.com/elastic/rally[Rally]
which you can use to measure the performance impact. To get started,
please see https://esrally.readthedocs.io/en/stable/[Rally's documentation].