[DOCS] Clarifies description of num_top_feature_importance_values (#52246)
Co-Authored-By: Valeriy Khakhutskyy <1292899+valeriy42@users.noreply.github.com>
This commit is contained in:
parent
7fcd997b39
commit
123b3c6f55
|
@ -152,7 +152,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
|
||||||
|
|
||||||
`analysis`.`classification`.`num_top_feature_importance_values`::::
|
`analysis`.`classification`.`num_top_feature_importance_values`::::
|
||||||
(Optional, integer)
|
(Optional, integer)
|
||||||
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
|
Advanced configuration option. Specifies the maximum number of
|
||||||
|
{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
|
||||||
|
importance] values per document to return. By default, it is zero and no feature importance
|
||||||
|
calculation occurs.
|
||||||
|
|
||||||
`analysis`.`classification`.`training_percent`::::
|
`analysis`.`classification`.`training_percent`::::
|
||||||
(Optional, integer)
|
(Optional, integer)
|
||||||
|
@ -235,7 +238,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
|
||||||
|
|
||||||
`analysis`.`regression`.`num_top_feature_importance_values`::::
|
`analysis`.`regression`.`num_top_feature_importance_values`::::
|
||||||
(Optional, integer)
|
(Optional, integer)
|
||||||
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
|
Advanced configuration option. Specifies the maximum number of
|
||||||
|
{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance]
|
||||||
|
values per document to return. By default, it is zero and no feature importance calculation
|
||||||
|
occurs.
|
||||||
|
|
||||||
`analysis`.`regression`.`training_percent`::::
|
`analysis`.`regression`.`training_percent`::::
|
||||||
(Optional, integer)
|
(Optional, integer)
|
||||||
|
|
|
@ -904,13 +904,6 @@ total number of categories (in the {version} version of the {stack}, it's two)
|
||||||
to predict then we will report all category probabilities. Defaults to 2.
|
to predict then we will report all category probabilities. Defaults to 2.
|
||||||
end::num-top-classes[]
|
end::num-top-classes[]
|
||||||
|
|
||||||
tag::num-top-feature-importance-values[]
|
|
||||||
Advanced configuration option. If set, feature importance for the top
|
|
||||||
most important features will be computed. Importance is calculated
|
|
||||||
using the SHAP (SHapley Additive exPlanations) method as described in
|
|
||||||
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf[Lundberg, S. M., & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NeurIPS 2017.].
|
|
||||||
end::num-top-feature-importance-values[]
|
|
||||||
|
|
||||||
tag::over-field-name[]
|
tag::over-field-name[]
|
||||||
The field used to split the data. In particular, this property is used for
|
The field used to split the data. In particular, this property is used for
|
||||||
analyzing the splits with respect to the history of all splits. It is used for
|
analyzing the splits with respect to the history of all splits. It is used for
|
||||||
|
|
Loading…
Reference in New Issue