Docs: Fix termvectors by removing example blocks with embedded CONSOLE tests
This commit is contained in:
parent
477d1aa8bf
commit
40f40d7676
|
@ -121,8 +121,8 @@ whereas the absolute numbers have no meaning in this context. By default,
|
|||
when requesting term vectors of artificial documents, a shard to get the statistics
|
||||
from is randomly selected. Use `routing` only to hit a particular shard.
|
||||
|
||||
.Returning stored term vectors
|
||||
==================================================
|
||||
[float]
|
||||
==== Example: Returning stored term vectors
|
||||
|
||||
First, we create an index that stores term vectors, payloads etc. :
|
||||
|
||||
|
@ -270,10 +270,8 @@ Response:
|
|||
// TEST[continued]
|
||||
// TESTRESPONSE[s/"took": 6/"took": "$body.took"/]
|
||||
|
||||
==================================================
|
||||
|
||||
.Generating term vectors on the fly
|
||||
==================================================
|
||||
[float]
|
||||
==== Example: Generating term vectors on the fly
|
||||
|
||||
Term vectors which are not explicitly stored in the index are automatically
|
||||
computed on the fly. The following request returns all information and statistics for the
|
||||
|
@ -293,12 +291,10 @@ GET /twitter/tweet/1/_termvectors
|
|||
--------------------------------------------------
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
==================================================
|
||||
|
||||
[[docs-termvectors-artificial-doc]]
|
||||
[example]
|
||||
.Artificial documents
|
||||
--
|
||||
[float]
|
||||
==== Example: Artificial documents
|
||||
|
||||
Term vectors can also be generated for artificial documents,
|
||||
that is for documents not present in the index. For example, the following request would
|
||||
|
@ -320,11 +316,10 @@ GET /twitter/tweet/_termvectors
|
|||
--------------------------------------------------
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
--
|
||||
|
||||
[[docs-termvectors-per-field-analyzer]]
|
||||
.Per-field analyzer
|
||||
==================================================
|
||||
[float]
|
||||
===== Per-field analyzer
|
||||
|
||||
Additionally, a different analyzer than the one at the field may be provided
|
||||
by using the `per_field_analyzer` parameter. This is useful in order to
|
||||
|
@ -387,11 +382,11 @@ Response:
|
|||
// TESTRESPONSE[s/"sum_doc_freq": 2/"sum_doc_freq": "$body.term_vectors.fullname.field_statistics.sum_doc_freq"/]
|
||||
// TESTRESPONSE[s/"doc_count": 4/"doc_count": "$body.term_vectors.fullname.field_statistics.doc_count"/]
|
||||
// TESTRESPONSE[s/"sum_ttf": 4/"sum_ttf": "$body.term_vectors.fullname.field_statistics.sum_ttf"/]
|
||||
==================================================
|
||||
|
||||
|
||||
[[docs-termvectors-terms-filtering]]
|
||||
.Terms filtering
|
||||
==================================================
|
||||
[float]
|
||||
==== Example: Terms filtering
|
||||
|
||||
Finally, the terms returned could be filtered based on their tf-idf scores. In
|
||||
the example below we obtain the three most "interesting" keywords from the
|
||||
|
@ -461,4 +456,3 @@ Response:
|
|||
}
|
||||
--------------------------------------------------
|
||||
// TESTRESPONSE
|
||||
==================================================
|
||||
|
|
Loading…
Reference in New Issue