A static code analysis revealed that we are not closing
the input stream in the find_file_structure endpoint.
This actually makes no difference in practice, as the
particular InputStream implementation in this case is
org.elasticsearch.common.bytes.BytesReferenceStreamInput
and its close() method is a no-op. However, it is good
practice to close the stream anyway.
This change adds the earliest and latest timestamps into
the field stats for fields of type "date" in the output of
the ML find_file_structure endpoint. This will enable the
cards for date fields in the file data visualizer in the UI
to be made to look more similar to the cards for date
fields in the index data visualizer in the UI.
Dots in the column names cause an error in the ingest
pipeline, as dots are special characters in ingest pipeline.
This PR changes dots into underscores in CSV field names
suggested by the ML find_file_structure endpoint _unless_
the field names are specifically overridden. The reason for
allowing them in overrides is that fields that are not
mentioned in the ingest pipeline can contain dots. But it's
more consistent that the default behaviour is to replace
them all.
Fixeselastic/kibana#26800
When analysing a semi-structured text file the
find_file_structure endpoint merges lines to form
multi-line messages using the assumption that the
first line in each message contains the timestamp.
However, if the timestamp is misdetected then this
can lead to excessive numbers of lines being merged
to form massive messages.
This commit adds a line_merge_size_limit setting
(default 10000 characters) that halts the analysis
if a message bigger than this is created. This
prevents significant CPU time being spent subsequently
trying to determine the internal structure of the
huge bogus messages.
This change helps to prevent the situation where a binary
file uploaded to the find_file_structure endpoint is
detected as being text in the UTF-16 character set, and
then causes a large amount of CPU to be spent analysing
the bogus text structure.
The approach is to check the distribution of zero bytes
between odd and even file positions, on the grounds that
UTF-16BE or UTF16-LE would have a very skewed distribution.
This change fixes a race condition that would result in an
in-memory data structure becoming out-of-sync with persistent
tasks in cluster state.
If repeated often enough this could result in it being
impossible to open any ML jobs on the affected node, as the
master node would think the node had capacity to open another
job but the chosen node would error during the open sequence
due to its in-memory data structure being full.
The race could be triggered by opening a job and then closing
it a tiny fraction of a second later. It is unlikely a user
of the UI could open and close the job that fast, but a script
or program calling the REST API could.
The nasty thing is, from the externally observable states and
stats everything would appear to be fine - the fast open then
close sequence would appear to leave the job in the closed
state. It's only later that the leftovers in the in-memory
data structure might build up and cause a problem.
This change contains a major refactoring of the timestamp
format determination code used by the ML find file structure
endpoint.
Previously timestamp format determination was done separately
for each piece of text supplied to the timestamp format finder.
This had the drawback that it was not possible to distinguish
dd/MM and MM/dd in the case where both numbers were 12 or less.
In order to do this sensibly it is best to look across all the
available timestamps and see if one of the numbers is greater
than 12 in any of them. This necessitates making the timestamp
format finder an instantiable class that can accumulate evidence
over time.
Another problem with the previous approach was that it was only
possible to override the timestamp format to one of a limited
set of timestamp formats. There was no way out if a file to be
analysed had a timestamp that was sane yet not in the supported
set. This is now changed to allow any timestamp format that can
be parsed by a combination of these Java date/time formats:
yy, yyyy, M, MM, MMM, MMMM, d, dd, EEE, EEEE, H, HH, h, mm, ss,
a, XX, XXX, zzz
Additionally S letter groups (fractional seconds) are supported
providing they occur after ss and separated from the ss by a dot,
comma or colon. Spacing and punctuation is also permitted with
the exception of the question mark, newline and carriage return
characters, together with literal text enclosed in single quotes.
The full list of changes/improvements in this refactor is:
- Make TimestampFormatFinder an instantiable class
- Overrides must be specified in Java date/time format - Joda
format is no longer accepted
- Joda timestamp formats in outputs are now derived from the
determined or overridden Java timestamp formats, not stored
separately
- Functionality for determining the "best" timestamp format in
a set of lines has been moved from TextLogFileStructureFinder
to TimestampFormatFinder, taking advantage of the fact that
TimestampFormatFinder is now an instantiable class with state
- The functionality to quickly rule out some possible Grok
patterns when looking for timestamp formats has been changed
from using simple regular expressions to the much faster
approach of using the Shift-And method of sub-string search,
but using an "alphabet" consisting of just 1 (representing any
digit) and 0 (representing non-digits)
- Timestamp format overrides are now much more flexible
- Timestamp format overrides that do not correspond to a built-in
Grok pattern are mapped to a %{CUSTOM_TIMESTAMP} Grok pattern
whose definition is included within the date processor in the
ingest pipeline
- Grok patterns that correspond to multiple Java date/time
patterns are now handled better - the Grok pattern is accepted
as matching broadly, and the required set of Java date/time
patterns is built up considering all observed samples
- As a result of the more flexible acceptance of Grok patterns,
when looking for the "best" timestamp in a set of lines
timestamps are considered different if they are preceded by
a different sequence of punctuation characters (to prevent
timestamps far into some lines being considered similar to
timestamps near the beginning of other lines)
- Out-of-the-box Grok patterns that are considered now include
%{DATE} and %{DATESTAMP}, which have indeterminate day/month
ordering
- The order of day/month in formats with indeterminate day/month
order is determined by considering all observed samples (plus
the server locale if the observed samples still do not suggest
an ordering)
Relates #38086Closes#35137Closes#35132
This adds the node name where we fail to start a process via the native
controller to facilitate debugging as otherwise it might not be known
to which node the job was allocated.
Moves the test infrastructure away from using node.max_local_storage_nodes, allowing us in a
follow-up PR to deprecate this setting in 7.x and to remove it in 8.0.
This also changes the behavior of InternalTestCluster so that starting up nodes will not automatically
reuse data folders of previously stopped nodes. If this behavior is desired, it needs to be explicitly
done by passing the data path from the stopped node to the new node that is started.
Re-enable muted tests and accommodate recent backend changes
that result in higher memory usage being reported for a job
at the start of its life-cycle
This corrects what appears to have been a copy-paste error
where the logger for `MachineLearning` and `DataFrame` was wrongly
set to be that of `XPackPlugin`.
The date_histogram accepts an interval which can be either a calendar
interval (DST-aware, leap seconds, arbitrary length of months, etc) or
fixed interval (strict multiples of SI units). Unfortunately this is inferred
by first trying to parse as a calendar interval, then falling back to fixed
if that fails.
This leads to confusing arrangement where `1d` == calendar, but
`2d` == fixed. And if you want a day of fixed time, you have to
specify `24h` (e.g. the next smallest unit). This arrangement is very
error-prone for users.
This PR adds `calendar_interval` and `fixed_interval` parameters to any
code that uses intervals (date_histogram, rollup, composite, datafeed, etc).
Calendar only accepts calendar intervals, fixed accepts any combination of
units (meaning `1d` can be used to specify `24h` in fixed time), and both
are mutually exclusive.
The old interval behavior is deprecated and will throw a deprecation warning.
It is also mutually exclusive with the two new parameters. In the future the
old dual-purpose interval will be removed.
The change applies to both REST and java clients.
Muting a number of AutoDetectMemoryLimitIT tests to give CI a chance to
settle before easing in required backend changes.
relates elastic/ml-cpp#486
relates #42086
Improve the hard_limit memory audit message by reporting how many bytes
over the configured memory limit the job was at the point of the last
allocation failure.
Previously the model memory usage was reported, however this was
inaccurate and hence of limited use - primarily because the total
memory used by the model can decrease significantly after the models
status is changed to hard_limit but before the model size stats are
reported from autodetect to ES.
While this PR contains the changes to the format of the hard_limit audit
message it is dependent on modifications to the ml-cpp backend to
send additional data fields in the model size stats message. These
changes will follow in a subsequent PR. It is worth noting that this PR
must be merged prior to the ml-cpp one, to keep CI tests happy.
This change replaces the extremely unfriendly message
"Number of messages analyzed must be positive" in the
case where the sample lines were incorrectly grouped
into just one message to an error that more helpfully
explains the likely root cause of the problem.
The run task is supposed to run elasticsearch with the given plugin or
module. However, for modules, this is most realistic if using the full
distribution. This commit changes the run setup to use the default or
oss as appropriate.
This switches the strategy used to download machine learning artifacts
from a manual download through S3 to using an Ivy repository on top of
S3. This gives us all the benefits of Gradle dependency resolution
including local caching.
* [ML] Refactor NativeStorageProvider to enable reuse
Moves `NativeStorageProvider` as a machine learning component
so that it can be reused for other job types. Also, we now
pass the persistent task description as unique identifier which
avoids conflicts between jobs of different type but with same ids.
* Adding nativeStorageProvider as component
Since `TransportForecastJobAction` is expected to get injected a `NativeStorageProvider` class, we need to make sure that it is a constructed component, as it does not have a zero parametered, public ctor.
The date_histogram internally converts obsolete timezones (such as
"Canada/Mountain") into their modern equivalent ("America/Edmonton").
But rollup just stored the TZ as provided by the user.
When checking the TZ for query validation we used a string comparison,
which would fail due to the date_histo's upgrading behavior.
Instead, we should convert both to a TimeZone object and check if their
rules are compatible.
Values higher than 100% are now allowed to accommodate use
cases where swapping has been determined to be acceptable.
Anomaly detector jobs only use their full model memory
during background persistence, and this is deliberately
staggered, so with large numbers of jobs few will generally
be persisting state at the same time. Settings higher than
available memory are only recommended for OEM type
situations where a wrapper tightly controls the types of
jobs that can be created, and each job alone is considerably
smaller than what each node can handle.
* [ML] Add validation that rejects duplicate detectors in PutJobAction
Closes#39704
* Add YML integration test for duplicate detectors fix.
* Use "== false" comparison rather than "!" operator.
* Refine error message to sound more natural.
* Put job description in square brackets in the error message.
* Use the new validation in ValidateJobConfigAction.
* Exclude YML tests for new validation from permission tests.
* Replace usages RandomizedTestingTask with built-in Gradle Test (#40978)
This commit replaces the existing RandomizedTestingTask and supporting code with Gradle's built-in JUnit support via the Test task type. Additionally, the previous workaround to disable all tasks named "test" and create new unit testing tasks named "unitTest" has been removed such that the "test" task now runs unit tests as per the normal Gradle Java plugin conventions.
(cherry picked from commit 323f312bbc829a63056a79ebe45adced5099f6e6)
* Fix forking JVM runner
* Don't bump shadow plugin version
The invalid license enforced is exposed to the cluster state update
thread (via the license state listener) before the constructor has
finished. This violates the JLS for safe publication of an object, and
means there is a concurrency bug lurking here. This commit addresses
this by avoiding publication of the invalid license enforcer before the
constructor has returned.
This change adds information about which UI path
(if any) created ML anomaly detector jobs to the
stats returned by the _xpack/usage endpoint.
Counts for the following possibilities are expected:
* ml_module_apache_access
* ml_module_apm_transaction
* ml_module_auditbeat_process_docker
* ml_module_auditbeat_process_hosts
* ml_module_nginx_access
* ml_module_sample
* multi_metric_wizard
* population_wizard
* single_metric_wizard
* unknown
The "unknown" count is for jobs that do not have a
created_by setting in their custom_settings.
Closes#38403
Ensure that there is at least a 1s delay between the time that state
is persisted by each of the two jobs in the test.
Model snapshot IDs use the current time in epoch seconds to
distinguish themselves, hence snapshots will be overwritten
by another if it occurs in the same 1s window.
Closes#40347
If multiple jobs are created together and the anomaly
results index does not exist then some of the jobs could
fail to update the mappings of the results index. This
lead them to fail to write their results correctly later.
Although this scenario sounds rare, it is exactly what
happens if the user creates their first jobs using the
Nginx module in the ML UI.
This change fixes the problem by updating the mappings
of the results index if it is found to exist during a
creation attempt.
Fixes#38785
* [ML] Refactor common utils out of ML plugin to XPack.Core
* implementing GET filters with abstract transport
* removing added rest param
* adjusting how defaults can be supplied
The problem here was that `DatafeedJob` was updating the last end time searched
based on the `now` even though when there are aggregations, the extactor will
only search up to the floor of `now` against the histogram interval.
This commit fixes the issue by using the end time as calculated by the extractor.
It also adds an integration test that uses aggregations. This test would fail
before this fix. Unfortunately the test is slow as we need to wait for the
datafeed to work in real time.
Closes#39842
* [ML] refactoring lazy query and agg parsing
* Clean up and addressing PR comments
* removing unnecessary try/catch block
* removing bad call to logger
* removing unused import
* fixing bwc test failure due to serialization and config migrator test
* fixing style issues
* Adjusting DafafeedUpdate class serialization
* Adding todo for refactor in v8
* Making query non-optional so it does not write a boolean byte