* Repeated language analyzers
The `catalan` analyzer was repeated on the supported list :)
* Reordered the languages to have alphabetic order
* Added space for format
* Reordered the languages and removed repeated
Added a new section detailing how to use the attachment processor
within an array.
This reverts commit #22296 and instead links to the foreach processor.
The deprecation warning gives now the same message as 5.x. The deprecation warning was previously removed, but given that we are still lenient with old indices we should still output the warning.
Our `float`/`double` fields generally assume that `-0` compares less than `+0`,
except when bounds are exclusive: an exclusive lower bound on `-0` excludes
`+0` and an exclusive upper bound on `+0` excludes `-0`.
Closes#22167
Today we ship with default jvm.options for server Elasticsearch that
prevents Netty from using some unsafe optimizations. Yet, the settings
do nothing for the transport client since it is embedded in other
applications that will not read and use those settings. This commit adds
these settings for the transport client, and is done so in a way that
still enables users to go unsafe if they want to go unsafe (they
shouldn't, but the option is there).
Relates #22284
The way aggregations on scripts work is by hiding scripts behind the same API
that we use for regular fields. However, there is no native support for boolean
fields, those need to be exposed as integers, with `0` standing for `false` and
`1` for true.
Relates #20941
The `UnicastZenPing` shows it's age and is the result of many small changes. The current state of affairs is confusing and is hard to reason about. This PR cleans it up (while following the same original intentions). Highlights of the changes are:
1) Clear 3 round flow - no interleaving of scheduling.
2) The previous implementation did a best effort attempt to wait for ongoing pings to be sent and completed. The pings were guaranteed to complete because each used the total ping duration as a timeout. This did make it hard to reason about the total ping duration and the flow of the code. All of this is removed now and ping should just complete within the given duration or not be counted (note that it was very handy for testing, but I move the needed sync logic to the test).
3) Because of (2) the pinging scheduling changed a bit, to give a chance for the last round to complete. We now ping at the beginning, 1/3 and 2/3 of the duration.
4) To offset for (3) a bit, incoming ping requests are now added to on going ping collections.
5) UnicastZenPing never establishes full blown connections (but does reuse them if there). Relates to #22120
6) Discovery host providers are only used once per pinging round. Closes#21739
7) Usage of the ability to open a connection without connecting to a node ( #22194 ) and shorter connection timeouts helps with connections piling up. Closes#19370
8) Beefed up testing and sped them up.
9) removed light profile from production code
If we conditionally do random things, e.g. initialize a node only after the first test, we have to make sure that we unconditionally create a new seed calling random.nextLong(), then initialize the node under a private randomness context. This makes sure that any random usage through Randomness.get() will retrieve the proper random instance through RandomizedContext.current().getRandom(). When running under private randomness, the context will return the Random instance that was created with the provided seed (forked from the main random instance) rather than the main Random that's exposed to tests as well. Otherwise tests become non repeatable because that initialization part happens only before the first executed test.
This adds fromXContent method and unit test for sort values that are part of
InternalSearchHit. In order to centralize serialisation and xContent parsing and
rendering code, move all relevant parts to a new class which can be unit tested
much better in isolation.This is part of the preparation for parsing search
responses on the client side.
Sending a request is not a good indicator as it doesn't mean it's processed yet. Instead we should use one of the first request from source to target.
This caused the cluster state block to be added to early , blocking the recovery it self
A previous fix for the handling of paths on Windows related to paths
containing multiple spaces introduced a issue where if JAVA_HOME ends
with a backslash, then Elasticsearch will refuse to start. This is not a
critical bug as a workaround exists (remove the trailing backslash), but
should be fixed nevertheless. This commit addresses this situation while
not regressing the previous fix.
Relates #22132
The allocation decider explanation messages where improved in #21771 to
include the specific Elasticsearch setting that contributed to the
decision taken by the decider. This commit improves upon the
explanation message output by including whether the setting was an index
level setting or a cluster level setting. This will further help the
user understand and locate the setting that is the cause of shards
remaining unassigned or remaining on their current node.
Introduces `XContentParser#namedObject which works a little like
`StreamInput#readNamedWriteable`: on startup components register
parsers under names and a superclass. At runtime we look up the
parser and call it to parse the object.
Right now the parsers take a context object they use to help with
the parsing but I hope to be able to eliminate the need for this
context as most what it is used for at this point is to move
around parser registries which should be replaced by this method
eventually. I make no effort to do so in this PR because it is
big enough already. This is meant to the a start down a road that
allows us to remove classes like `QueryParseContext`,
`AggregatorParsers`, `IndicesQueriesRegistry`, and
`ParseFieldRegistry`.
The goal here is to reduce the amount of plumbing required to
allow parsing pluggable things. With this you don't have to pass
registries all over the place. Instead you must pass a super
registry to fewer places and use it to wrap the reader. This is
the same tradeoff that we use for NamedWriteable and it allows
much, much simpler binary serialization. We think we want that
same thing for xcontent serialization.
The only parsing actually converted to this method is parsing
`ScoreFunctions` inside of `FunctionScoreQuery`. I chose this
because it is relatively self contained.
It looks like the exception reason can differ in different default
locales, so the build would fail in any non-English locale. This
switches the catch to the name of the exception which shouldn't
vary.
ClusterStateObserver is a utility class that simplifies interacting with the cluster state in cases where an action takes a decision based on the current cluster state but may want to wait for a new state and retry upon failure. The ClusterStateObserver implements its functionality by keeping a reference to the last cluster state that it observed. When a new ClusterStateObserver is created, it samples a cluster state from the cluster service which is subsequently used for change detection. If actions take a long time to process, however, the cluster observer can reference very old cluster states. Due to cluster observers being created very frequently and cluster states being potentially large the referenced cluster states can waste a lot of heap space. A specific example where this can make a node go out of memory is given in point 2 of issue #21568: The action listener in TransportMasterNodeAction.AsyncSingleAction has a ClusterStateObserver to coordinate the retry mechanism if the action on the master node fails due to the node not being master anymore. The ClusterStateObserver in AsyncSingleAction keeps a reference to the full cluster state when the action was initiated. If the pending tasks queue grows quite large and has older items in it lots of cluster states can possibly be referenced.
This commit changes the ClusterStateObserver to hold only onto the part of the cluster state that's needed for change detection.
This changes the class from extending the abstract class to implementing the
ToXContent interface only. The former could lead to unexpected behaviour when
trying to display the object, since the "toString()" method inherited from
ToXContentToBytes would create an error message because the SuggestionBuilders
toXContent() methods don't render complete json objects.
* Internal: Refactor SettingCommand into EnvironmentAwareCommand
This change renames and changes the behavior of SettingCommand to have
its primary method take in a fully initialized Environment for
elasticsearch instead of just a map of settings. All of the subclasses
of SettingCommand already did this at some point, so this just removes
duplication.
We are currenlty checking that no deprecation warnings are emitted in our query tests. That can be moved to ESTestCase (disabled in ESIntegTestCase) as it allows us to easily catch where our tests use deprecated features and assert on the expected warnings.
We return deprecation warnings as response headers, besides logging them. Strict parsing mode stayed around, but was only used in query tests, though we also introduced checks for deprecation warnings there that don't need strict parsing anymore (see #20993).
We can then safely remove support for strict parsing mode. The final goal is to remove the ParseFieldMatcher class, but there are many many users of it. This commit prepares the field for the removal, by deprecating ParseFieldMatcher and making it effectively not needed. Strict parsing is removed from ParseFieldMatcher, and strict parsing is replaced in tests where needed with deprecation warnings checks.
Note that the setting to enable strict parsing was never ported to the new settings infra hance it cannot be set in production. It is really only used in our own tests.
Relates to #19552
Rename the method to assertToXContentEquivalent to highlight that it's tailored to ToXContent comparisons.
Rather than parsing into a map and replacing byte[] in both those maps, add custom equality assertions that recursively walk maps and lists and call Arrays.equals whenever a byte[] is encountered.