Similar to the Filters aggregation but only supports "keyed" filter buckets and automatically "ANDs" pairs of filters to produce a form of adjacency matrix.
The intersection of buckets "A" and "B" is named "A&B" (the choice of separator is configurable). Empty intersection buckets are removed from the final results.
Closes#22169
* Promote longs to doubles when a terms agg mixes decimal and non-decimal number
This change makes the terms aggregation work when the buckets coming from different indices are a mix of decimal numbers and non-decimal numbers. In this case non-decimal number (longs) are promoted to decimal (double) which can result in a loss of precision for big numbers.
Fixes#22232
The use of the avg aggregation for sorting the terms aggregation is not encouraged since it has unbounded error. This changes the examples to use the max aggregation which does not suffer the same issues
and be much more stingy about what we consider a console candidate.
* Add `// CONSOLE` to check-running
* Fix version in some snippets
* Mark groovy snippets as groovy
* Fix versions in plugins
* Fix language marker errors
* Fix language parsing in snippets
This adds support for snippets who's language is written like
`[source, txt]` and `["source","js",subs="attributes,callouts"]`.
This also makes language required for snippets which is nice because
then we can be sure we can grep for snippets in a particular language.
Currently both aggregations really share the same implementation. This commit
splits the implementations so that regular histograms can support decimal
intervals/offsets and compute correct buckets for negative decimal values.
However the response API is still the same. So for intance both regular
histograms and date histograms will produce an
`org.elasticsearch.search.aggregations.bucket.histogram.Histogram`
aggregation.
The optimization to compute an identifier of the rounded value and the
rounded value itself has been removed since it was only used by regular
histograms, which now do the rounding themselves instead of relying on the
Rounding abstraction.
Closes#8082Closes#4847
The current heuristic to compute a default shard size is pretty aggressive,
it returns `max(10, number_of_shards * size)` as a value for the shard size.
I think making it less aggressive has the benefit that it would reduce the
likelyness of running into OOME when there are many shards (yearly
aggregations with time-based indices can make numbers of shards in the
thousands) and make the use of breadth-first more likely/efficient.
This commit replaces the heuristic with `size * 1.5 + 10`, which is enough
to have good accuracy on zipfian distributions.