mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-03-09 14:34:43 +00:00
Implements a new histogram aggregation called `variable_width_histogram` which dynamically determines bucket intervals based on document groupings. These groups are determined by running a one-pass clustering algorithm on each shard and then reducing each shard's clusters using an agglomerative clustering algorithm. This PR addresses #9572. The shard-level clustering is done in one pass to minimize memory overhead. The algorithm was lightly inspired by [this paper](https://ieeexplore.ieee.org/abstract/document/1198387). It fetches a small number of documents to sample the data and determine initial clusters. Subsequent documents are then placed into one of these clusters, or a new one if they are an outlier. This algorithm is described in more details in the aggregation's docs. At reduce time, a [hierarchical agglomerative clustering](https://en.wikipedia.org/wiki/Hierarchical_clustering) algorithm inspired by [this paper](https://arxiv.org/abs/1802.00304) continually merges the closest buckets from all shards (based on their centroids) until the target number of buckets is reached. The final values produced by this aggregation are approximate. Each bucket's min value is used as its key in the histogram. Furthermore, buckets are merged based on their centroids and not their bounds. So it is possible that adjacent buckets will overlap after reduction. Because each bucket's key is its min, this overlap is not shown in the final histogram. However, when such overlap occurs, we set the key of the bucket with the larger centroid to the midpoint between its minimum and the smaller bucket’s maximum: `min[large] = (min[large] + max[small]) / 2`. This heuristic is expected to increases the accuracy of the clustering. Nodes are unable to share centroids during the shard-level clustering phase. In the future, resolving https://github.com/elastic/elasticsearch/issues/50863 would let us solve this issue. It doesn’t make sense for this aggregation to support the `min_doc_count` parameter, since clusters are determined dynamically. The `order` parameter is not supported here to keep this large PR from becoming too complex. Co-authored-by: James Dorfman <jamesdorfman@users.noreply.github.com>
= Elasticsearch == A Distributed RESTful Search Engine === https://www.elastic.co/products/elasticsearch[https://www.elastic.co/products/elasticsearch] Elasticsearch is a distributed RESTful search engine built for the cloud. Features include: * Distributed and Highly Available Search Engine. ** Each index is fully sharded with a configurable number of shards. ** Each shard can have one or more replicas. ** Read / Search operations performed on any of the replica shards. * Multi Tenant. ** Support for more than one index. ** Index level configuration (number of shards, index storage, ...). * Various set of APIs ** HTTP RESTful API ** All APIs perform automatic node operation rerouting. * Document oriented ** No need for upfront schema definition. ** Schema can be defined for customization of the indexing process. * Reliable, Asynchronous Write Behind for long term persistency. * (Near) Real Time Search. * Built on top of Apache Lucene ** Each shard is a fully functional Lucene index ** All the power of Lucene easily exposed through simple configuration / plugins. * Per operation consistency ** Single document level operations are atomic, consistent, isolated and durable. == Getting Started First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about. === Installation * https://www.elastic.co/downloads/elasticsearch[Download] and unpack the Elasticsearch official distribution. * Run `bin/elasticsearch` on Linux or macOS. Run `bin\elasticsearch.bat` on Windows. * Run `curl -X GET http://localhost:9200/`. * Start more servers ... === Indexing Let's try and index some twitter like information. First, let's index some tweets (the `twitter` index will be created automatically): ---- curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d ' { "user": "elastic", "post_date": "2010-01-15T01:46:38", "message": "Building the site, should be kewl" }' ---- Now, let's see if the information was added by GETting it: ---- curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true' ---- === Searching Mmm search..., shouldn't it be elastic? Let's find all the tweets that `kimchy` posted: ---- curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true' ---- We can also use the JSON query language Elasticsearch provides instead of a query string: ---- curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match" : { "user": "kimchy" } } }' ---- Just for kicks, let's get all the documents stored (we should see the tweet from `elastic` as well): ---- curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' ---- We can also do range search (the `post_date` was automatically identified as date) ---- curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "range" : { "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" } } } }' ---- There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser. === Multi Tenant - Indices Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data. Elasticsearch supports multiple indices. In the previous example we used an index called `twitter` that stored tweets for every user. Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case: ---- curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' ---- The above will index information into the `kimchy` index. Each user will get their own special index. Complete control on the index level is allowed. As an example, in the above case, we might want to change from the default 1 shards with 1 replica per index, to 2 shards with 1 replica per index (because this user tweets a lot). Here is how this can be done (the configuration can be in yaml as well): ---- curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d ' { "settings" : { "index.number_of_shards" : 2, "index.number_of_replicas" : 1 } }' ---- Search (and similar operations) are multi index aware. This means that we can easily search on more than one index (twitter user), for example: ---- curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' ---- Or on all the indices: ---- curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' ---- And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends). === Distributed, Highly Available Let's face it, things will fail.... Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 1 shard and 1 replica per shard (1/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards). In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed. === Where to go from here? We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the https://www.elastic.co/products/elasticsearch[elastic.co] website. General questions can be asked on the https://discuss.elastic.co[Elastic Forum] or https://ela.st/slack[on Slack]. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only. === Building from Source Elasticsearch uses https://gradle.org[Gradle] for its build system. In order to create a distribution, simply run the `./gradlew assemble` command in the cloned directory. The distribution for each project will be created under the `build/distributions` directory in that project. See the xref:TESTING.asciidoc[TESTING] for more information about running the Elasticsearch test suite. === Upgrading from older Elasticsearch versions In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html[upgrade documentation] for more details on the upgrade process.
Description
Languages
Java
99.5%
Groovy
0.4%