🔎 Open source distributed and RESTful search engine.
Go to file
Benjamin Trent c9ead80c31
[7.x] [ML][Inference] separating definition and config object storage (#48651) (#48695)
* [ML][Inference] separating definition and config object storage (#48651)

This separates out the `definition` object from being stored within the configuration object in the index. 

This allows us to gather the config object without decompressing a potentially large definition.

Additionally, `input` is moved to the TrainedModelConfig object and out of the definition. This is so the trained input fields are accessible outside the potentially large model definition.
2019-10-30 13:27:29 -04:00
.ci Work around incorrect lintian version on debian 10 (#48620) 2019-10-29 14:07:03 +02:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Enable node roles to be pluggable (#43175) 2019-06-13 15:15:48 -04:00
buildSrc Only log vagrant output on failure (#48402) 2019-10-30 10:40:44 +02:00
client [7.x] [ML][Inference] separating definition and config object storage (#48651) (#48695) 2019-10-30 13:27:29 -04:00
dev-tools Deprecate the pidfile setting (#45938) 2019-08-23 21:31:35 -04:00
distribution Bump bundled JDK to JDK 13.0.1+9 (#48587) 2019-10-28 12:31:33 -04:00
docs Fix specification for cluster.remote.connect (#48690) 2019-10-30 11:26:15 -04:00
gradle Upgrade to Gradle 5.6.3 (#48235) 2019-10-29 14:48:03 +02:00
libs Unmuted and fixed test. 2019-10-30 16:53:56 +01:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Add option to split processor for preserving trailing empty fields (#48685) 2019-10-30 08:25:03 -05:00
plugins Reduce allocations when draining HTTP requests bodies in repository tests (#48541) 2019-10-29 09:15:06 +01:00
qa Reduce packaging test log output and introduce ready request interval (#48324) 2019-10-29 14:46:33 -07:00
rest-api-spec Scripting: fill in get contexts REST API (#48319) (#48602) 2019-10-29 14:41:15 -06:00
server Fix SnapshotShardStatus Reporting for Failed Shard (#48556) (#48687) 2019-10-30 15:43:41 +01:00
test Restore from Individual Shard Snapshot Files in Parallel (#48110) (#48686) 2019-10-30 14:36:30 +01:00
x-pack [7.x] [ML][Inference] separating definition and config object storage (#48651) (#48695) 2019-10-30 13:27:29 -04:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.eclipseformat.xml Refine the auto-formatting settings (#48618) 2019-10-29 10:40:03 +00:00
.editorconfig Exit batch files explictly using ERRORLEVEL (#29583) 2019-01-25 16:44:33 +01:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Make sure the clean task doesn't break test fixtures (#43641) 2019-07-08 17:58:27 +03:00
CONTRIBUTING.md Refine the auto-formatting settings (#48618) 2019-10-29 10:40:03 +00:00
LICENSE.txt Clarify mixed license text (#45637) 2019-08-16 13:39:12 -04:00
NOTICE.txt Restore date aggregation performance in UTC case (#38221) (#38700) 2019-02-11 16:30:48 +03:00
README.textile [Docs] Correct README example snippet (#45133) 2019-08-02 16:53:49 +02:00
TESTING.asciidoc Detail the IDEs options for configuring the debug step (#48507) 2019-10-25 17:27:48 +03:00
Vagrantfile Convert vagrant tests to per platform projects (#45064) 2019-08-12 16:01:53 -07:00
build.gradle Simplify usage of Gradle Shadow plugin (#48478) (#48597) 2019-10-28 12:11:55 -07:00
gradle.properties Testclusters: improove timeout handling (#43440) 2019-07-01 11:39:53 +03:00
gradlew Upgrade to Gradle 5.6 (#45005) 2019-09-12 16:18:41 +03:00
gradlew.bat Upgrade to Gradle 5.5 (#43788) (#43832) 2019-07-01 11:54:58 -07:00
settings.gradle Remove eclipse conditionals (#44075) 2019-10-03 11:55:00 +03:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @post_date@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we might want to change from the default 1 shards with 1 replica per index, to 2 shards with 1 replica per index (because this user tweets a lot). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "settings" : {
        "index.number_of_shards" : 2,
        "index.number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.