angular-cn/packages/compiler-cli/ngcc/test/rendering/renderer_spec.ts

391 lines
19 KiB
TypeScript
Raw Normal View History

/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
import MagicString from 'magic-string';
import * as ts from 'typescript';
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
import {fromObject, generateMapFileComment, SourceMapConverter} from 'convert-source-map';
import {absoluteFrom, getFileSystem} from '../../../src/ngtsc/file_system';
import {TestFile, runInEachFileSystem} from '../../../src/ngtsc/file_system/testing';
import {loadTestFiles} from '../../../test/helpers';
import {Import, ImportManager} from '../../../src/ngtsc/translator';
import {CompiledClass, DecorationAnalyzer} from '../../src/analysis/decoration_analyzer';
import {NgccReferencesRegistry} from '../../src/analysis/ngcc_references_registry';
import {ModuleWithProvidersInfo} from '../../src/analysis/module_with_providers_analyzer';
import {PrivateDeclarationsAnalyzer, ExportInfo} from '../../src/analysis/private_declarations_analyzer';
import {SwitchMarkerAnalyzer} from '../../src/analysis/switch_marker_analyzer';
import {Esm2015ReflectionHost} from '../../src/host/esm2015_host';
import {Renderer} from '../../src/rendering/renderer';
import {MockLogger} from '../helpers/mock_logger';
import {RenderingFormatter, RedundantDecoratorMap} from '../../src/rendering/rendering_formatter';
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
import {makeTestEntryPointBundle, getRootFiles} from '../helpers/utils';
class TestRenderingFormatter implements RenderingFormatter {
addImports(output: MagicString, imports: Import[], sf: ts.SourceFile) {
output.prepend('\n// ADD IMPORTS\n');
}
addExports(output: MagicString, baseEntryPointPath: string, exports: ExportInfo[]) {
output.prepend('\n// ADD EXPORTS\n');
}
addConstants(output: MagicString, constants: string, file: ts.SourceFile): void {
output.prepend('\n// ADD CONSTANTS\n');
}
addDefinitions(output: MagicString, compiledClass: CompiledClass, definitions: string) {
output.prepend('\n// ADD DEFINITIONS\n');
}
removeDecorators(output: MagicString, decoratorsToRemove: RedundantDecoratorMap) {
output.prepend('\n// REMOVE DECORATORS\n');
}
rewriteSwitchableDeclarations(output: MagicString, sourceFile: ts.SourceFile): void {
output.prepend('\n// REWRITTEN DECLARATIONS\n');
}
addModuleWithProvidersParams(
output: MagicString, moduleWithProviders: ModuleWithProvidersInfo[],
importManager: ImportManager): void {
output.prepend('\n// ADD MODUlE WITH PROVIDERS PARAMS\n');
}
}
function createTestRenderer(
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
packageName: string, files: TestFile[], dtsFiles?: TestFile[], mappingFiles?: TestFile[]) {
const logger = new MockLogger();
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
loadTestFiles(files);
if (dtsFiles) {
loadTestFiles(dtsFiles);
}
if (mappingFiles) {
loadTestFiles(mappingFiles);
}
const fs = getFileSystem();
const isCore = packageName === '@angular/core';
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
const bundle = makeTestEntryPointBundle(
'es2015', 'esm2015', isCore, getRootFiles(files), dtsFiles && getRootFiles(dtsFiles));
const typeChecker = bundle.src.program.getTypeChecker();
const host = new Esm2015ReflectionHost(logger, isCore, typeChecker, bundle.dts);
const referencesRegistry = new NgccReferencesRegistry(host);
const decorationAnalyses = new DecorationAnalyzer(
fs, bundle.src.program, bundle.src.options, bundle.src.host,
typeChecker, host, referencesRegistry, bundle.rootDirs, isCore)
.analyzeProgram();
const switchMarkerAnalyses = new SwitchMarkerAnalyzer(host).analyzeProgram(bundle.src.program);
const privateDeclarationsAnalyses =
new PrivateDeclarationsAnalyzer(host, referencesRegistry).analyzeProgram(bundle.src.program);
const testFormatter = new TestRenderingFormatter();
spyOn(testFormatter, 'addExports').and.callThrough();
spyOn(testFormatter, 'addImports').and.callThrough();
spyOn(testFormatter, 'addDefinitions').and.callThrough();
spyOn(testFormatter, 'addConstants').and.callThrough();
spyOn(testFormatter, 'removeDecorators').and.callThrough();
spyOn(testFormatter, 'rewriteSwitchableDeclarations').and.callThrough();
spyOn(testFormatter, 'addModuleWithProvidersParams').and.callThrough();
const renderer = new Renderer(testFormatter, fs, logger, host, isCore, bundle);
return {renderer,
testFormatter,
decorationAnalyses,
switchMarkerAnalyses,
privateDeclarationsAnalyses,
bundle};
}
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
runInEachFileSystem(() => {
describe('Renderer', () => {
let _: typeof absoluteFrom;
let INPUT_PROGRAM: TestFile;
let COMPONENT_PROGRAM: TestFile;
let INPUT_PROGRAM_MAP: SourceMapConverter;
let RENDERED_CONTENTS: string;
let OUTPUT_PROGRAM_MAP: SourceMapConverter;
let MERGED_OUTPUT_PROGRAM_MAP: SourceMapConverter;
beforeEach(() => {
_ = absoluteFrom;
INPUT_PROGRAM = {
name: _('/src/file.js'),
contents:
`import { Directive } from '@angular/core';\nexport class A {\n foo(x) {\n return x;\n }\n}\nA.decorators = [\n { type: Directive, args: [{ selector: '[a]' }] }\n];\n`
};
COMPONENT_PROGRAM = {
name: _('/src/component.js'),
contents:
`import { Component } from '@angular/core';\nexport class A {}\nA.decorators = [\n { type: Component, args: [{ selector: 'a', template: '{{ person!.name }}' }] }\n];\n`
};
INPUT_PROGRAM_MAP = fromObject({
'version': 3,
'file': _('/src/file.js'),
'sourceRoot': '',
'sources': [_('/src/file.ts')],
'names': [],
'mappings':
'AAAA,OAAO,EAAE,SAAS,EAAE,MAAM,eAAe,CAAC;AAC1C,MAAM;IACF,GAAG,CAAC,CAAS;QACT,OAAO,CAAC,CAAC;IACb,CAAC;;AACM,YAAU,GAAG;IAChB,EAAE,IAAI,EAAE,SAAS,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQ,EAAE,KAAK,EAAE,CAAC,EAAE;CACnD,CAAC',
'sourcesContent': [INPUT_PROGRAM.contents]
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
RENDERED_CONTENTS = `
// ADD IMPORTS
// ADD EXPORTS
// ADD CONSTANTS
// ADD DEFINITIONS
// REMOVE DECORATORS
` + INPUT_PROGRAM.contents;
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
OUTPUT_PROGRAM_MAP = fromObject({
'version': 3,
'file': 'file.js',
'sources': [_('/src/file.js')],
'sourcesContent': [INPUT_PROGRAM.contents],
'names': [],
'mappings': ';;;;;;;;;;AAAA;;;;;;;;;'
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
MERGED_OUTPUT_PROGRAM_MAP = fromObject({
'version': 3,
'sources': [_('/src/file.ts')],
'names': [],
'mappings': ';;;;;;;;;;AAAA',
'file': 'file.js',
'sourcesContent': [INPUT_PROGRAM.contents]
});
});
describe('renderProgram()', () => {
it('should render the modified contents; and a new map file, if the original provided no map file.',
() => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses} =
createTestRenderer('test-package', [INPUT_PROGRAM]);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
expect(result[0].path).toEqual(_('/src/file.js'));
expect(result[0].contents)
.toEqual(RENDERED_CONTENTS + '\n' + generateMapFileComment('file.js.map'));
expect(result[1].path).toEqual(_('/src/file.js.map'));
expect(result[1].contents).toEqual(OUTPUT_PROGRAM_MAP.toJSON());
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
it('should render as JavaScript', () => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [COMPONENT_PROGRAM]);
renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
expect(addDefinitionsSpy.calls.first().args[2])
.toEqual(
`A.ngComponentDef = ɵngcc0.ɵɵdefineComponent({ type: A, selectors: [["a"]], factory: function A_Factory(t) { return new (t || A)(); }, consts: 1, vars: 1, template: function A_Template(rf, ctx) { if (rf & 1) {
ɵngcc0.ɵɵtext(0);
} if (rf & 2) {
ɵngcc0.ɵɵtextInterpolate(ctx.person.name);
} }, encapsulation: 2 });
/*@__PURE__*/ ɵngcc0.ɵsetClassMetadata(A, [{
type: Component,
args: [{ selector: 'a', template: '{{ person!.name }}' }]
}], null, null);`);
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
describe('calling RenderingFormatter methods', () => {
it('should call addImports with the source code and info about the core Angular library.',
() => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [INPUT_PROGRAM]);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addImportsSpy = testFormatter.addImports as jasmine.Spy;
expect(addImportsSpy.calls.first().args[0].toString()).toEqual(RENDERED_CONTENTS);
expect(addImportsSpy.calls.first().args[1]).toEqual([
{specifier: '@angular/core', qualifier: 'ɵngcc0'}
]);
});
it('should call addDefinitions with the source code, the analyzed class and the rendered definitions.',
() => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [INPUT_PROGRAM]);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
expect(addDefinitionsSpy.calls.first().args[0].toString()).toEqual(RENDERED_CONTENTS);
expect(addDefinitionsSpy.calls.first().args[1]).toEqual(jasmine.objectContaining({
name: 'A',
decorators: [jasmine.objectContaining({name: 'Directive'})]
}));
expect(addDefinitionsSpy.calls.first().args[2])
.toEqual(
`A.ngDirectiveDef = ɵngcc0.ɵɵdefineDirective({ type: A, selectors: [["", "a", ""]], factory: function A_Factory(t) { return new (t || A)(); } });
/*@__PURE__*/ ɵngcc0.ɵsetClassMetadata(A, [{
type: Directive,
args: [{ selector: '[a]' }]
}], null, { foo: [] });`);
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
});
it('should call removeDecorators with the source code, a map of class decorators that have been analyzed',
() => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [INPUT_PROGRAM]);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const removeDecoratorsSpy = testFormatter.removeDecorators as jasmine.Spy;
expect(removeDecoratorsSpy.calls.first().args[0].toString())
.toEqual(RENDERED_CONTENTS);
// Each map key is the TS node of the decorator container
// Each map value is an array of TS nodes that are the decorators to remove
const map = removeDecoratorsSpy.calls.first().args[1] as Map<ts.Node, ts.Node[]>;
const keys = Array.from(map.keys());
expect(keys.length).toEqual(1);
expect(keys[0].getText())
.toEqual(`[\n { type: Directive, args: [{ selector: '[a]' }] }\n]`);
const values = Array.from(map.values());
expect(values.length).toEqual(1);
expect(values[0].length).toEqual(1);
expect(values[0][0].getText())
.toEqual(`{ type: Directive, args: [{ selector: '[a]' }] }`);
});
it('should render classes without decorators if handler matches', () => {
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [{
name: _('/src/file.js'),
contents: `
import { Directive, ViewChild } from '@angular/core';
export class UndecoratedBase { test = null; }
UndecoratedBase.propDecorators = {
test: [{
type: ViewChild,
args: ["test", {static: true}]
}],
};
`
}]);
renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
expect(addDefinitionsSpy.calls.first().args[2])
.toEqual(
`UndecoratedBase.ngBaseDef = ɵngcc0.ɵɵdefineBase({ viewQuery: function (rf, ctx) { if (rf & 1) {
ɵngcc0.ɵɵstaticViewQuery(_c0, true, null);
} if (rf & 2) {
var _t;
ɵngcc0.ɵɵqueryRefresh(_t = ɵngcc0.ɵɵloadViewQuery()) && (ctx.test = _t.first);
} } });`);
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
});
it('should call renderImports after other abstract methods', () => {
// This allows the other methods to add additional imports if necessary
const {renderer, decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('test-package', [INPUT_PROGRAM]);
const addExportsSpy = testFormatter.addExports as jasmine.Spy;
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
const addConstantsSpy = testFormatter.addConstants as jasmine.Spy;
const addImportsSpy = testFormatter.addImports as jasmine.Spy;
renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
expect(addExportsSpy).toHaveBeenCalledBefore(addImportsSpy);
expect(addDefinitionsSpy).toHaveBeenCalledBefore(addImportsSpy);
expect(addConstantsSpy).toHaveBeenCalledBefore(addImportsSpy);
});
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
describe('source map merging', () => {
it('should merge any inline source map from the original file and write the output as an inline source map',
() => {
const {decorationAnalyses, renderer, switchMarkerAnalyses,
privateDeclarationsAnalyses} =
createTestRenderer(
'test-package', [{
...INPUT_PROGRAM,
contents: INPUT_PROGRAM.contents + '\n' + INPUT_PROGRAM_MAP.toComment()
}]);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
expect(result[0].path).toEqual(_('/src/file.js'));
expect(result[0].contents)
.toEqual(RENDERED_CONTENTS + '\n' + MERGED_OUTPUT_PROGRAM_MAP.toComment());
expect(result[1]).toBeUndefined();
});
it('should merge any external source map from the original file and write the output to an external source map',
() => {
const sourceFiles: TestFile[] = [{
...INPUT_PROGRAM,
contents: INPUT_PROGRAM.contents + '\n//# sourceMappingURL=file.js.map'
}];
const mappingFiles: TestFile[] =
[{name: _(INPUT_PROGRAM.name + '.map'), contents: INPUT_PROGRAM_MAP.toJSON()}];
const {decorationAnalyses, renderer, switchMarkerAnalyses,
privateDeclarationsAnalyses} =
createTestRenderer('test-package', sourceFiles, undefined, mappingFiles);
const result = renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
expect(result[0].path).toEqual(_('/src/file.js'));
expect(result[0].contents)
.toEqual(RENDERED_CONTENTS + '\n' + generateMapFileComment('file.js.map'));
expect(result[1].path).toEqual(_('/src/file.js.map'));
expect(JSON.parse(result[1].contents)).toEqual(MERGED_OUTPUT_PROGRAM_MAP.toObject());
});
});
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
describe('@angular/core support', () => {
it('should render relative imports in ESM bundles', () => {
const CORE_FILE: TestFile = {
name: _('/src/core.js'),
contents:
`import { NgModule } from './ng_module';\nexport class MyModule {}\nMyModule.decorators = [\n { type: NgModule, args: [] }\n];\n`
};
const R3_SYMBOLS_FILE: TestFile = {
// r3_symbols in the file name indicates that this is the path to rewrite core imports
// to
name: _('/src/r3_symbols.js'),
contents: `export const NgModule = () => null;`
};
// The package name of `@angular/core` indicates that we are compiling the core library.
const {decorationAnalyses, renderer, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('@angular/core', [CORE_FILE, R3_SYMBOLS_FILE]);
renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
expect(addDefinitionsSpy.calls.first().args[2])
.toContain(`/*@__PURE__*/ ɵngcc0.setClassMetadata(`);
const addImportsSpy = testFormatter.addImports as jasmine.Spy;
expect(addImportsSpy.calls.first().args[1]).toEqual([
{specifier: './r3_symbols', qualifier: 'ɵngcc0'}
]);
});
it('should render no imports in FESM bundles', () => {
const CORE_FILE: TestFile = {
name: _('/src/core.js'),
contents: `export const NgModule = () => null;
export class MyModule {}\nMyModule.decorators = [\n { type: NgModule, args: [] }\n];\n`
refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921) To improve cross platform support, all file access (and path manipulation) is now done through a well known interface (`FileSystem`). For testing a number of `MockFileSystem` implementations are provided. These provide an in-memory file-system which emulates operating systems like OS/X, Unix and Windows. The current file system is always available via the static method, `FileSystem.getFileSystem()`. This is also used by a number of static methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass `FileSystem` objects around all the time. The result of this is that one must be careful to ensure that the file-system has been initialized before using any of these static methods. To prevent this happening accidentally the current file system always starts out as an instance of `InvalidFileSystem`, which will throw an error if any of its methods are called. You can set the current file-system by calling `FileSystem.setFileSystem()`. During testing you can call the helper function `initMockFileSystem(os)` which takes a string name of the OS to emulate, and will also monkey-patch aspects of the TypeScript library to ensure that TS is also using the current file-system. Finally there is the `NgtscCompilerHost` to be used for any TypeScript compilation, which uses a given file-system. All tests that interact with the file-system should be tested against each of the mock file-systems. A series of helpers have been provided to support such tests: * `runInEachFileSystem()` - wrap your tests in this helper to run all the wrapped tests in each of the mock file-systems. * `addTestFilesToFileSystem()` - use this to add files and their contents to the mock file system for testing. * `loadTestFilesFromDisk()` - use this to load a mirror image of files on disk into the in-memory mock file-system. * `loadFakeCore()` - use this to load a fake version of `@angular/core` into the mock file-system. All ngcc and ngtsc source and tests now use this virtual file-system setup. PR Close #30921
2019-06-06 15:22:32 -04:00
};
const {decorationAnalyses, renderer, switchMarkerAnalyses, privateDeclarationsAnalyses,
testFormatter} = createTestRenderer('@angular/core', [CORE_FILE]);
renderer.renderProgram(
decorationAnalyses, switchMarkerAnalyses, privateDeclarationsAnalyses);
const addDefinitionsSpy = testFormatter.addDefinitions as jasmine.Spy;
expect(addDefinitionsSpy.calls.first().args[2])
.toContain(`/*@__PURE__*/ setClassMetadata(`);
const addImportsSpy = testFormatter.addImports as jasmine.Spy;
expect(addImportsSpy.calls.first().args[1]).toEqual([]);
});
});
});
});
});